随着风电大规模并网,电网频率稳定成为不可忽略的关键问题之一,双馈风电机组可通过释放、存储旋转动能参与平抑系统频率波动,改善系统频率稳定性。不同运行工况下,双馈风电机组释放、存储旋转动能的能力存在差异,基于此,该文量化分析释放、存储旋转动能的能力,提出一种可变增益的系统频率波动平抑策略,即低频偏移时,控制增益设定为风电机组旋转动能释放能力的一次函数;高频偏移时,控制增益设定为风电机组旋转动能存储能力的一次函数,该策略在避免频率波动平抑能力不足和过度调节的同时,实现对频率波动平抑的自主控制,基于EMTP-RV软件平台的仿真实验验证了该文所提频率波动平抑控制策略的有效性。
Abstract
With the large-scale grid-connection of wind power, the stability of grid frequency has become one of the key problems that cannot be ignored. Doubly-fed induction generators (DFIGs) can mitigate the frequency fluctuations by releasing the kinetic energy from the DFIG and storing the kinetic energy into the DFIG, thus improving the frequency stability. The energy-releasing and energy-storing capabilities are different when DFIGs are operating in various speed conditions. Therefore, this paper suggests employing different variable gains during over-frequency and under-frequency periods, respectively. During the under-frequency period, the control gain is set to a linear function of the energy-releasing capability; during the over-frequency period, the control gain is set to a linear function of the energy-storing capability; and thereby mitigating frequency fluctuation and avoiding the issues of insufficient and excessive mitigation of frequency fluctuation. This paper established a test power system with DFIGs based on an EMTP-RV simulator. Simulation results indicate that the proposed strategy is valid.
关键词
风力发电 /
频率稳定 /
双馈风电机组 /
动能释放能力 /
动能储存能力 /
时变增益
Key words
wind power /
frequency stability /
DFIGs /
energy-releasing capability /
energy-storing capability /
variable gain
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈雪梅, 陆超, 韩英铎. 电力系统频率问题浅析与频率特性研究综述[J]. 电力工程技术, 2020, 39(1): 1-9.
CHEN X M, LU C, HAN Y D.Review of power system frequency problems and frequency dynamic characteristics[J]. Electric power engineering technology, 2020, 39(1): 1-9.
[2] 杨茂, 代博祉, 刘蕾. 风电功率概率预测研究综述[J].东北电力大学学报, 2020, 40(2): 1-6.
YANG M, DAI B Z, LIU L.A review of wind power probabilistic prediction[J]. Journal of Northeast Electric Power University, 2020, 46(2):1-6
[3] 段士伟, 杨修宇, 柴仁勇, 等. 大规模风电接入的灵活性资源优化配置方法[J]. 东北电力大学学报, 2020, 40(6): 45-51.
DUAN S W, YANG X Y, CHAI R Y, et al.Optional configuration method of flexibility resources of high-penetration renewable energy[J]. Journal of Northeast Electric Power University, 2020, 40(6): 45-51.
[4] YANG D J, KIM J, KANG Y C, et al.Temporary frequency support of a DFIG for high wind power penetration[J]. IEEE transactions on power systems, 2018, 33(3): 3428-3437.
[5] YE Y D, QIAO Y, LU Z X.Revolution of frequency regulation in the converter-dominated power system[J]. Renewable and sustainable energy reviews, 2019, 111: 145-156.
[6] 王瑞明, 徐浩, 秦世耀, 等. 风电场一次调频分层协调控制研究与应用[J]. 电力系统保护与控制, 2019, 47(14): 50-58.
WANG R M, XU H, QIN S Y, et al.Research and application on primary frequency regulation of wind farms based on hierarchical coordinated control[J]. Power system protection and control, 2019, 47(14): 50-58.
[7] 颜湘武, 宋子君, 崔森, 等. 基于变功率点跟踪和超级电容器储能协调控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2020, 35(3): 530-541.
YAN X W, SONG Z J, CUI S, et al.Primary frequency regulation strategy of doubly-fed wind turbine based on variable power point tracking and supercapacitor energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 530-541.
[8] 付红军, 陈惠粉, 赵华, 等. 高渗透率下风电的调频技术研究综述[J]. 中国电力, 2021, 54(1): 104-115.
FU H J, CHEN H F, ZHAO H, et al.Review on frequency regulation technology with high wind power penetration[J]. Electric power, 2021, 54(1): 104-115.
[9] PENG X T, YAO W, YAN C, et al.Two-stage variable proportion coefficient based frequency support of grid-connected DFIG-WTs[J]. IEEE transactions on power systems, 2020, 35(2): 962-974.
[10] WU Y K, YANG W H, HU Y, et al.Frequency regulation at a wind farm using time-varying inertia and droop controls[J]. IEEE transactions on industry applications, 2019, 55(1): 213-224.
[11] HU Y L, WU Y K.Approximation to frequency control capability of a DFIG-based wind farm using a simple linear gain droop control[J]. IEEE transactions on industry applications, 2019, 55(3): 2300-2309.
[12] KIM Y, KANG M, MULJADI E, et al.Power smoothing of a variable-speed wind turbine generator in association with the rotor-speed-dependent gain[J]. IEEE transactions on sustainable energy, 2017, 8(3): 990-999.
[13] 朱瑛, 高云波, 臧海祥, 等. 风电机组输出功率平滑技术综述[J]. 电力系统自动化, 2018, 42(18): 182-191.
ZHU Y, GAO Y B, ZANG H X, et al.Review of output power smoothing technologies for wind turbine[J]. Automation of electric power systems, 2018, 42(18): 182-191.
[14] JAE I Y, KANG Y C, YANG D J, et al.Power smoothing of a variable-speed wind turbine generator based on a two-valued control gain[J]. IEEE transactions on sustainable energy, 2020, 11(4): 2765-2774.
[15] YANG D J, ZHENG T Y, JIN E S, et al.Frequency control scheme with dynamic droop characteristics of a DFIG for mitigating the frequency fluctuations[J]. International transactions on electrical energy systems, 2021, 31(11): 1-11.
[16] CHOI S, KANG Y C, KIM K H, et al.A frequency-responsive power-smoothing scheme of a doubly-fed induction generator for enhancing the energy-absorbing capability[J]. International journal of electrical power and energy systems, 2021, 131: 1-12.
[17] CHOI S, KANG Y C, KIM K H, et al.Frequency regulation of a synchronous generator in association with a back-to-back converter[J]. Transactions of the Korean institute of electrical engineers, 2021, 70(8): 1082-1088.
[18] PETERSSON A.Analysis, modeling and control of doubly-fed induction generators for wind turbines[M]. Gothenburg: Chalmers Tekniska Hogskola, 2005.
基金
国家自然科学基金(51907106); 江苏省高校自然科学基金(20KJB470026)