海上变电站结构承载能力控制工况分析及多工况集成优化

黄珊珊, 孙震洲, 王永发, 陈杰峰, 吕国儿, 於刚节

太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 360-367.

PDF(2678 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2678 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 360-367. DOI: 10.19912/j.0254-0096.tynxb.2021-1580

海上变电站结构承载能力控制工况分析及多工况集成优化

  • 黄珊珊, 孙震洲, 王永发, 陈杰峰, 吕国儿, 於刚节
作者信息 +

ANALYSIS OF BEARING CAPACITY CONTROL LOAD CASE OF OFFSHORE SUBSTATION AND ITS OPTIMIZATION UNDER MULTIPLE LOAD CASES

  • Huang Shanshan, Sun Zhenzhou, Wang Yongfa, Chen Jiefeng, Lyu Guo’er, Yu Gangjie
Author information +
文章历史 +

摘要

对于海上变电站的结构设计,在满足其安全性的同时,也要注重提高构件的材料利用率。针对如东海域的某海上变电站,采用SACS软件建立其整体有限元模型,结合Matlab自编程序,开展变电站结构各关键部位承载能力的控制工况研究,在此基础上对整体结构进行多工况下的集成优化,同时以变电站所有构件和导管架主节点为对象,提出海上变电站结构全工况综合定量评价指标——综合UC值(unity check ratio)。与传统方法相比,优化后变电站结构所有构件和导管架主节点强度的综合UC平均值均明显增大,表明构件的材料利用率显著提高。

Abstract

Both the security and material utilization improvement of members should be paid attention to in the structural design of offshore substations. For an offshore substation located in Rudong sea area, a complete finite element model is built in SACS and a Matlab program is also used to investigate the bearing capacity control load case of key positions of the substation. In addition, the whole structure is optimized under multiple load cases. Considering all members and main jacket joints, a comprehensive quantitative index——comprehensive UC(unity check ratio), is proposed for the offshore substation under all load cases. Compared with conventional methods, the comprehensive UC of all members and main jacket joints is increased significantly after optimization, indicating that the material utilization is improved obviously.

关键词

海上风电 / 变电站 / 工况 / 结构优化 / 综合UC值

Key words

offshore wind power / substations / working conditions / structure optimization / comprehensive UC

引用本文

导出引用
黄珊珊, 孙震洲, 王永发, 陈杰峰, 吕国儿, 於刚节. 海上变电站结构承载能力控制工况分析及多工况集成优化[J]. 太阳能学报. 2023, 44(5): 360-367 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1580
Huang Shanshan, Sun Zhenzhou, Wang Yongfa, Chen Jiefeng, Lyu Guo’er, Yu Gangjie. ANALYSIS OF BEARING CAPACITY CONTROL LOAD CASE OF OFFSHORE SUBSTATION AND ITS OPTIMIZATION UNDER MULTIPLE LOAD CASES[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 360-367 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1580
中图分类号: P752   

参考文献

[1] DNVGL-ST-0145, 2020 edition, Offshore substations[S].
[2] 孙震洲, 金伟良, 方滔, 等. 典型海上升压站地震储备承载系数研究[J]. 海洋工程, 2019, 37(3): 95-101, 142.
SUN Z Z, JIN W L, FANG T, et al.On the seismic reserve capacity factor of typical offshore substation[J]. The ocean engineering, 2019, 37(3): 95-101, 142.
[3] 孙震洲, 金伟良, 方滔, 等. 海上升压站在靠船工况下振动舒适性研究[J]. 海洋工程, 2019, 37(5): 148-155.
SUN Z Z, JIN W L, FANG T, et al.On the vibration comfortableness of offshore substation under ship impact conditions[J]. The ocean engineering, 2019, 37(5): 148-155.
[4] SUN Z Z, BI C W, ZHAO S X, et al.Experimental analysis on dynamic responses of an electrical platform for an offshore wind farm under earthquake load[J]. Journal of marine science and engineering, 2019, 7(8): 279.
[5] 吴子昂, 张晓蕊. 基于ANSYS软件的海上升压站上部组块吊耳的有限元分析[J]. 水电与新能源, 2020, 34(9): 46-49.
WU Z A, ZHANG X R.Finite element analysis of the lifting lug in upper part of an offshore booster station with ANSYS software[J]. Hydropower and new energy, 2020, 34(9): 46-49.
[6] 蔡东, 贾献林, 王玮哲. 基于有限元法的海上升压站组件吊耳强度计算[J]. 中国海洋平台, 2020, 35(5): 80-84.
CAI D, JIA X L, WANG W Z.Calculation for hanger strength of offshore substation components based on finite element method[J]. China offshore platform, 2020, 35(5): 80-84.
[7] 袁建中, 贾献林, 汤群益, 等. 海上升压站平台桩和上部结构柱腿连接强度分析[J]. 中国海洋平台, 2020, 35(4): 75-80.
YUAN J Z, JIA X L, TANG Q Y, et al.Strength analysis of joints between piles and superstructure columns of offshore substation[J]. China offshore platform, 2020, 35(4): 75-80.
[8] 王永发, 孙震洲, 汤群益, 等. 脚靴式海上升压站灌浆连接段强度分析研究[J]. 海洋工程, 2020, 38(5): 107-115.
WANG Y F, SUN Z Z, TANG Q Y, et al.Strength analysis of grouted connection of boot-type offshore substation[J]. The ocean engineering, 2020, 38(5): 107-115.
[9] 汤群益, 孙震洲, 王永发, 等. 两种典型海上升压站基础的坐底稳定性[J]. 中国海洋平台, 2019, 34(6): 47-55.
TANG Q Y, SUN Z Z, WANG Y F, et al.Bottom stability of two typical offshore substation foundations[J]. China offshore platform, 2019, 34(6): 47-55.
[10] ZHANG D L, BI C W, WU G Y, et al.Laboratory experimental investigation on the hydrodynamic responses of an extra-large electrical platform in wave and storm conditions[J]. Water, 2019, 11(10): 2042.
[11] 杨建军, 俞华锋, 赵生校, 等. 海上风电场升压变电站设计基本要求的研究[J]. 中国电机工程学报, 2016, 36(14): 3781-3789.
YANG J J, YU H F, ZHAO S X, et al.Research on basic requirements of offshore substation design[J]. Proceeding of the CSEE, 2016, 36(14): 3781-3789.
[12] 王建楹, 张育超, 武雪林, 等. 300 MW/220 kV海上升压站总体结构布置[J]. 船舶工程, 2020, 42(增刊1): 526-529,533.
WANG J Y, ZHANG Y C, WU X L, et al.Overall structural layout of 300 MW/220 kV offshore booster station[J]. Ship engineering, 2020, 42(S1): 526-529,533.
[13] 刘金全, 吴永祥, 李红有, 等. 海上升压站总体布置方案及设计原则[J]. 船舶工程, 2019, 41(增刊1): 406-410.
LIU J Q, WU Y X, LI H Y, et al.General layout and design principle of offshore substation[J]. Ship engineering, 2019, 41(S1): 406-410.
[14] 王海斌, 王霄, 孙烜, 等. 海上升压站基础导管架及上部组件灌浆连接施工技术[J]. 水电与新能源, 2021, 35(4): 55-59.
WANG H B, WANG X, SUN X, et al.Grouting connection construction technology for foundation jackets and upper parts of offshore booster station[J]. Hydropower and new energy, 2021, 35(4): 55-59.
[15] 毕远涛. 海上升压站安装技术分析[J]. 中国海洋平台, 2020, 35(2): 85-89.
BI Y T.Installation technical analysis of offshore booster station[J]. China offshore platform, 2020, 35(2): 85-89.
[16] 杨源, 汤翔, 辛妍丽. 海上升压站选址优化研究[J]. 中国电力, 2020, 53(7): 24-28,71.
YANG Y, TANG X, XIN Y L.Research on optimal site selection for offshore wind farms substation[J]. Electric power, 2020, 53(7): 24-28,71.
[17] 迟洪明, 吴永祥, 周全智, 等. 海上升压站的站址选择[J]. 船舶工程, 2019, 41(增刊1): 411-412,422.
CHI H M, WU Y X, ZHOU Q Z, et al.Research on site selection of offshore substation[J]. Ship engineering, 2019, 41(S1): 411-412,422.
[18] 朱瑞军, 何先龙, 金波, 等. 海上升压站振动测试和分析[J]. 噪声与振动控制, 2019, 39(3): 230-234.
ZHU R J, HE X L, JIN B, et al.Vibration test and analysis of ocean booster stations[J]. Noise and vibration control, 2019, 39(3): 230-234.
[19] 张田雷, 崔志伟, 王永强. 升压站海上运输振动监测系统设计与实现[J]. 海洋开发与管理, 2018, 35(9): 115-119.
ZHANG T L, CUI Z W, WANG Y Q.Design and implementation of vibration monitoring system for transportation of offshore substation[J]. Ocean development and management, 2018, 35(9): 115-119.
[20] CHEN J F, SUN Z Z, YUAN J P, et al.Comparison research on modal parameters identification of measured vibration response signals of an offshore substation platform[J]. The 6th international conference on environmental science and civil engineering, 2020, 455: 1-12.
[21] 黄玲玲, 汤华, 曹家麟, 等. 交流海上变电站设计相关研究综述[J]. 中国电机工程学报, 2017, 37(5): 1351-1360.
HUANG L L, TANG H, CAO J L, et al.Analysis and prospects of offshore AC substation design technology[J]. Proceedings of the CSEE, 2017, 37(5): 1351-1360.
[22] 康桂花. 计算概论[M]. 北京: 中国铁道出版社, 2016.
KANG G H.Computing generality[M]. Beijing: China Railway Publishing House, 2016.
[23] NB/T 31115—2017,风电场工程110 kV~220 kV海上升压变电站设计规范[S].
NB/T 31115—2017,Code for 110 kV-220 kV offshore substation design of wind power projects[S].
[24] Norsok N-004, Design of steel structures[S].
[25] BS EN1993, Eurocode 3, design of steel structures[S].

基金

浙江省自然科学基金(LQ21E090010)

PDF(2678 KB)

Accesses

Citation

Detail

段落导航
相关文章

/