基于空洞因果卷积网络的风电机组异常检测

江国乾, 周俊超, 武鑫, 徐向东, 何群, 谢平

太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 368-375.

PDF(1799 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1799 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 368-375. DOI: 10.19912/j.0254-0096.tynxb.2021-1581

基于空洞因果卷积网络的风电机组异常检测

  • 江国乾1, 周俊超1, 武鑫2, 徐向东1, 何群1, 谢平1
作者信息 +

WIND TURBINE ANOMALY DETECTION BASED ON DILATED CAUSAL CONVOLUTION NETWORK

  • Jiang Guoqian1, Zhou Junchao1, Wu Xin2, Xu Xiangdong1, He Qun1, Xie Ping1
Author information +
文章历史 +

摘要

准确可靠的异常检测对于保障风电机组安全高效运行尤为重要。然而,由于风电机组内部结构复杂,运行工况复杂多变,导致所获取的数据采集与监控(SCADA)系统数据往往呈现出复杂的非线性和关联耦合特性。为了更加有效地捕获不同传感器变量之间的空间相关性,提出基于空洞因果卷积网络的风电机组异常检测方法,并采用Focal Loss改进损失函数解决了数据不平衡问题对模型性能的影响。该方法可通过不同的感受野大小从多尺度角度提取丰富的空间相关特征,有效建模并挖掘不同传感器数据间存在的空间因果关系。同时,该模型提供了一种端到端的异常检测方案,可直接从原始SCADA数据中提取空间特征,建立数据与状态标签之间的非线性映射关系,从而输出异常检测结果。通过某风场的SCADA数据实例分析验证了所提出方法的可行性和有效性。

Abstract

Accurate and reliable anomaly detection is of great significance to ensure the safe and efficient operation of wind turbines. However, due to the complex structure and variable operation conditions of wind turbines, the measure SCADA data usually present complex nonlinear and strongly correlated and coupling characteristics. To better capture spatial correlations among different sensor variables, a new wind turbine anomaly detection approach based on dilated causal convolution network is proposed. Specifically, Focal Loss is introduced to improve the traditional loss function to address the data imbalance issue. The proposed approach can extract effective multiscale spatially correlated features with different receptive field sizes and effectively model the hidden spatial causality among different sensor variables. Furthermore, it can provide an end-to-end anomaly detection solution for wind turbines, which can directly learn useful spatial features from raw SCADA data and build the nonlinear mapping relationship between original data space and condition label space, thus finally outputting the corresponding detection results. A real case study with SCADA data from a wind farm is used to verify the feasibility and effectiveness of the proposed approach.

关键词

风电机组 / 因果卷积 / 空洞卷积 / 不平衡数据 / 异常检测

Key words

wind turbine / causal convolution / dilated convolution / imbalanced data / anomaly detection

引用本文

导出引用
江国乾, 周俊超, 武鑫, 徐向东, 何群, 谢平. 基于空洞因果卷积网络的风电机组异常检测[J]. 太阳能学报. 2023, 44(5): 368-375 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1581
Jiang Guoqian, Zhou Junchao, Wu Xin, Xu Xiangdong, He Qun, Xie Ping. WIND TURBINE ANOMALY DETECTION BASED ON DILATED CAUSAL CONVOLUTION NETWORK[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 368-375 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1581
中图分类号: TM721   

参考文献

[1] 龙霞飞, 杨苹, 郭红霞, 等. 大型风力发电机组故障诊断方法综述[J]. 电网技术, 2017, 41(11): 3480-3491.
LONG X F, YANG P, GUO H X, et al.Review of fault diagnosis methods for large wind turbines[J]. Power system technology, 2017, 41(11): 3480-3491.
[2] 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 175-189.
CHEN X F, GUO Y J, XU C B, et al.Review of fault diagnosis and health monitoring for wind power equipment[J]. Journal of mechanical engineering, 2020, 31(2): 175-189.
[3] 杜勉, 易俊, 郭剑波, 等. 神经网络技术在风电机组SCADA数据分析中的应用研究[J]. 电网技术, 2018, 42(7): 2200-2205.
DU M, YI J, GUO J B, et al.Research on the application of neural networks on wind turbine SCADA data analysis[J]. Power system technology, 2018, 42(7): 2200-2205.
[4] 曾军, 陈艳峰, 杨苹, 等. 大型风力发电机组故障诊断综述[J]. 电网技术, 2018, 42(3): 849-860.
ZENG J, CHEN Y F, YANG P, et al.Review of fault diagnosis methods of large-scale wind turbines[J]. Power system technology, 2018, 42(3): 849-860.
[5] WANG Z Y, YAO L G, CAI Y W, et al.Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis[J]. Renewable energy, 2020, 155: 1312-1327.
[6] JIN X H, XU Z W, QIAO W.Condition monitoring of wind turbine generators using SCADA data analysis[J]. IEEE transactions on sustainable energy, 2021, 12(1): 202-210.
[7] 景彤梅, 齐咏生, 刘利强, 等. 基于KECA-GRNN的风电机组齿轮箱状态监测与健康评估[J]. 太阳能学报, 2021, 42(6): 400-408.
JING T M, QI Y S, LIU L Q, et al.Condition monitoring and health assessment of wind turbine gearbox based on KECA-GRNN[J]. Acta energiae solaris sinica, 2021, 42(6): 400-408.
[8] 金晓航, 许壮伟, 孙毅, 等. 基于SCADA数据分析和稀疏自编码神经网络的风电机组在线运行状态监测[J]. 太阳能学报, 2021, 42(6): 321-328.
JIN X H, XU Z W, SUN Y, et al.Online condition monitoring for wind turbines based on SCADA data analysis and sparse auto-encoder neural network[J]. Acta energiae solaris sinica, 2021, 42(6): 321-328.
[9] 颜永龙, 李剑, 李辉, 等. 采用信息熵和组合模型的风电机组异常检测方法[J]. 电网技术, 2015, 39(3): 737-743.
YAN Y L, LI J, LI H, et al.A wind turbine anomaly detection method based on information entropy and combination model[J]. Power system technology, 2015, 39(3): 737-743.
[10] 黄荣舟, 汤宝平, 杨燕妮, 等. 基于长短时记忆网络融合SCADA数据的风电齿轮箱状态监测[J]. 太阳能学报, 2021, 42(1): 235-239.
HUANG R Z, TANG B P, YANG Y N, et al.Condition monitoring of wind turbine gearbox based on LSTM neural network fusing SCADA data[J]. Acta energiae solaris sinica, 2021, 42(1): 235-239.
[11] JIANG G Q, XIE P, HE Q, et al.Wind turbine fault detection using a denoising autoencoder with temporal information[J]. IEEE/ASME transactions on mechatronics, 2018, 23(1): 89-100.
[12] KONG Z Q, TANG B P, DENG L, et al.Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units[J]. Renewable energy, 2020, 146: 760-768.
[13] PANG Y H, HE Q, JIANG G Q, et al.Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data[J]. Renewable energy, 2020, 161: 510-524.
[14] BAI S, KOLTER J Z, KOLTUN V.An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. https://arxiv.org/abs/1803.01271.
[15] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980-2988.
[16] LECUN Y, BENGIO Y, HINTON G.Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[17] 郝帅, 马瑞泽, 赵新生, 等. 基于卷积块注意模型的YOLOv3输电线路故障检测方法[J]. 电网技术, 2021, 45(8): 2979-2987.
HAO S, MA R Z, ZHAO X S, et al.Fault detection of YOLOv3 transmission line based on convolutional block attention model[J]. Power system technology, 2021, 45(8): 2979-2987.
[18] SHI Z, LIN H, LIU L, et al.Deep attention gated dilated temporal convolutional networks with intra-parallel convolutional modules for end-to-end monaural speech separation[C]//INTERSPEECH Conference, Graz, Austria, 2019: 3183-3187.
[19] HE Q, PANG Y H, JIANG G Q, et al.A spatio-temporal multiscale neural network approach for wind turbine fault diagnosis with imbalanced SCADA data[J]. IEEE transactions on industrial informatics, 2021, 17(10): 6875-6884.
[20] 高欣, 纪维佳, 赵兵, 等. 不平衡数据集下基于CVAE-CNN模型的智能电表故障多分类方法[J]. 电网技术, 2021, 45(8): 3052-3060.
GAO X, JI W J, ZHAO B, et al.Multi-classification method of smart meter fault types based on CVAE-CNN model under imbalanced dataset[J]. Power system technology, 2021, 45(8): 3052-3060.
[21] LEAHY K, HU R L, KONSTANTAKOPOULOS I C, et al.Diagnosing and predicting wind turbine faults from SCADA data using support vector machines[J]. International journal of prognostics and health management, 2018, 9(1): 1-11.
[22] HE H, GARCIA E A.Learning from imbalanced data[J]. IEEE transactions on knowledge and data engineering, 2009, 21(9): 1539-1548.

基金

国家自然科学基金(61803329); 中央引导地方科技发展资金(216Z2101G); 河北省重点研发计划(19214306D); 河北省自然科学基金(F2021203009)

PDF(1799 KB)

Accesses

Citation

Detail

段落导航
相关文章

/