考虑到控制延时,LCL型光伏并网逆变器传统电容电流反馈有源阻尼(CCFAD)仅能保证采样频率fs的1/6以内系统稳定。弱电网中,电网阻抗的变化会导致实际谐振频率fr偏移,若fr大于fs/6,系统鲁棒性将会变差。为解决传统CCFAD有效阻尼区间不足的问题,提出一种基于延时补偿的改进CCFAD控制策略,通过在电容电流反馈通道串入级联超前相位补偿器,补偿控制延时引起的相位滞后,将有效正阻尼区扩展至(0,fs/3)频段,扩大系统稳定域。此外,电流控制环采用比例复数积分(PCI)控制策略,提高了并网电流跟踪性能,仿真和实验验证了所提策略的可行性。与传统CCFAD方法相比,所提延时补偿策略扩大了有效阻尼区,增强了系统鲁棒性。
Abstract
Considering the digital control delay, the boundary frequency of the equivalent positive and negative damping zone of the traditional capacitor current feedback active damping (CCFAD) of LCL-type photovoltaic grid-connected inverter is fs/6 (fs, is the sampling frequency). Under weak grid, the variation of grid impedance will cause the actual resonance frequency fr shift, and if fr>fs/6, the robustness of the system will be threatened. In order to solve the above problem, an improved compensation strategy is proposed, the phase lag caused by digital control delay was compensated by adding a cascade lead phase compensator into the capacitor-current-feedback path, so the effective positive damping region was broadened to (0,fs/3). In addition, the grid connected current tracking performance was improved due to the proportional complex integral (PCI) controller in the current control loop. Simulation and experiment verify the feasibility of the proposed strategy. Compared with the traditional CCFAD, the proposed delay compensation strategy expands the effective damping region and enhances the robustness of the system.
关键词
光伏发电 /
并网逆变器 /
延时补偿 /
有效阻尼 /
鲁棒性 /
弱电网
Key words
PV power /
grid-connected inverter /
delay compensation /
active damping /
robustness /
weak grid
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BLAABJERG F, ODORESCU, LISERRE M, et al.Overview of control and grid synchronization for distributed power generation systems[J]. IEEE transactions on industrial electronics, 2006, 53(5): 1398-1409.
[2] LU M H, AL-DURRA A, MUYEEN S M, et al.Benchmarking of stability and robustness against grid impedance variation for LCL-filtered grid-interfacing inverters[J]. IEEE transactions on power electronics, 2018, 33(10): 9033-9046.
[3] PENA-ALZOL R, LISERRE M, BAABBJERG F, et al.Analysis of the passive damping losses in LCL-filter-based grid converters[J]. IEEE transactions on power electronics, 2013, 28(6): 2642-2646.
[4] 许津铭, 谢少军, 肖华锋. LCL滤波器有源阻尼控制机制研究[J]. 中国电机工程学报, 2012, 32(9): 27-33.
XU J M, XIE S J, XIAO H F.Research on control mechanism of active damping for LCL filters[J].Proceedings of the CSEE, 2012, 32(9): 27-33.
[5] PAN D H, RUA X B, BAO C L, et al.Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter[J]. IEEE transactions on power electronics, 2014, 29(7): 3414-3427.
[6] LIU B Y, WEI Q K, ZOU C Y, et al.Stability analysis of LCL-type grid-connected inverter under single-loop inverter-side current control with capacitor voltage feedforward[J]. IEEE transactions on industrial informatics, 2018, 14(2): 691-702.
[7] WANG J G, YAN J D, JIANG L, et al.Delay-dependent stability of single-loop controlled grid-connected inverters with LCL filters[J]. IEEE transactions on power electronics, 2016, 31(1): 743-757.
[8] PARKER S G, MCGRATH B P, HOLMES D G.Regions of active damping control for LCL filters[J]. IEEE transactions on industry applications, 2014, 50(1): 424-432.
[9] 吴云亚, 谢少军, 阚加荣, 等. 逆变器侧电流反馈的LCL并网逆变器电网电压前馈控制策略[J]. 中国电机工程学报, 2013, 33(6): 54-60.
WU Y Y, XIE S J, KAN J R, et al.A full grid voltage feed-forward control strategy with inverter-side current feedback for LCL grid-connected inverters[J]. Proceedings of the CSEE, 2013, 33(6): 54-60.
[10] YANG D S, WANG X F, LIU F C, et al.Adaptive reactive power control of PV power plants for improved power transfer capability under ultra-weak grid conditions[J]. IEEE transactions on smart grid, 2019, 10(2): 1269-1279.
[11] 宋国杰, 李国进, 杨浩, 等. 基于d-q坐标系下LCL型光伏并网逆变器的PI+状态反馈控制[J]. 太阳能学报,2020, 41(11): 135-142.
SONG G J, LI G J, YANG H, et al.PI+ state feedback controller of single-phase LCL PV grid-connected inverter based on d-q coordinate system[J]. Acta energiae solaris sinica, 2020, 41(11): 135-142.
[12] YANG D S, RUAN X B, WU H.A real-time computation method with dual sampling modes to improve the current control performances of the LCL-type grid-connected inverter[J]. IEEE transactions on industrial electronics, 2015, 62(7): 4563-4572.
[13] ZENG C B, WANG H W, LI S D, et al.Grid-voltage-feedback active damping with lead compensation for LCL-type inverter connected to weak grid[J]. IEEE access, 2021, 9(1): 106813-106823.
[14] 孙鹏菊, 周雒维, 杜雄. 具有延时补偿的占空比预测数字控制算法[J]. 电工技术学报,2010, 25(5): 123-128.
SUN P J, ZHOU L W, DU X.Duty ratio prediction control method with time delay compensation[J]. Transactions of China Electrotechnical Society, 2010, 25(5): 123-128.
[15] 谢文浩, 刘一琦, 王建赜, 等. 提高LCL型并网逆变器阻抗重塑控制鲁棒性的延时补偿方法[J]. 电工技术学报, 2017, 32(S1): 178-185.
XIE W H,LIU Y Q, WANG J Z, et al.A delay compensation method of the grid-connected inverter with LCL filter to improve robustness of the impedance shaping control[J]. Transactions of China Electrotechnical Society, 2017, 32(S1): 178-185.
[16] YAO W L,YANG Y H, ZHANG X B, et al.Design and analysis of robust active damping for LCL filters using digital notch filters[J]. IEEE transactions on power electronics, 2017, 32(3): 2360-2375.
[17] FANG T Z, SHEN S H, ZHANG L, et al.Capacitor current feedback with phase-lead compensator to eliminate resonant frequency forbidden region for LCL-type grid-connected inverter in weak grid[J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(5): 5581-5596.
[18] HE Y Y, WANG X H, RUAN X B, et al.Capacitor-current proportional-integral positive feedback active damping for LCL-type grid-connected inverter to achieve high robustness against grid impedance variation[J]. IEEE transactions on power electronics, 2019, 34(12): 12423-12436.
[19] 杨浩, 宋国杰, 滕馥遥, 等. 单相并网逆变器自适应比例复数积分控制策略[J]. 高电压技术, 2020, 46(11): 3790-3799.
YANG H, SONG G J, TENG F Y, et al.Adaptive proportional complex integral control strategy for single-phase grid-connected inverter[J]. High voltage engineering, 2020, 46(11): 3790-3799.
[20] 阮新波, 王学华, 潘冬华, 等. LCL型并网逆变器的控制技术[M]. 北京: 科学出版社, 2015.
RUAN X B, WANG X H, PAN D H, et al.Control techniques for LCL-type grid-connected inverters[M]. Beijing: Science Press, 2015.
[21] XU J M, XIE S J, ZHANG B F, et al.Robust grid current control with impedance-phase shaping for LCL-filtered inverters in weak and distorted grid[J]. IEEE transactions on power electronics, 2018, 33(12): 10240-10250.
基金
国家自然科学基金(51567004); 广西自然科学基金(2021GXNSFAA220136); 广西高等学校高水平创新团队及卓越学者计划(桂教人才〔2020〕6号)