积尘形态及密度对太阳能PV/T系统的性能影响研究

张东, 俞凯, 景金龙, 刘畅, 安周建, 李秉阳

太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 171-177.

PDF(1983 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1983 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 171-177. DOI: 10.19912/j.0254-0096.tynxb.2021-1596

积尘形态及密度对太阳能PV/T系统的性能影响研究

  • 张东1,2, 俞凯1,2, 景金龙2,3, 刘畅1,2, 安周建1, 李秉阳1,2
作者信息 +

EFFECT OF DUST MORPHOLOGY AND DENSITY ON PERFORMANCE OF SOLAR PV/T SYSTEM

  • Zhang Dong1,2, Yu Kai1,2, Jing Jinlong2,3, Liu Chang1,2, An Zhoujian1, Li Bingyang1,2
Author information +
文章历史 +

摘要

在室外搭建太阳能光伏/热(PV/T)系统实验测试平台,研究积尘形态及密度对系统性能的影响。研究结果表明:积尘形态主要影响太阳能PV/T系统的光热效率,积尘密度主要影响系统的光电效率。与松散积尘相比,粘结积尘对系统光热效率及综合效率的影响更大。当松散积尘密度从0变化至33.79 g/m2时,系统的光热效率下降率仅为2.32%,而系统的光电效率下降率高达48.65%。在该文实验中,随着积尘密度的增大,太阳电池的工作温度依次为53.99、52.92、50.73和55.58 ℃,呈先降后增的变化趋势。故少量积尘不会使太阳能PV/T系统中太阳电池的工作温度升高而影响其正常工作。

Abstract

In order to analyze the influence of the dust morphology and density on system performance, the experimental test platform of solar photovoltaic/thermal (PV/T) system is built outdoors. The results show that the photothermal conversion efficiency of solar PV/T system is mainly affected by the morphology of dust, while the photoelectric conversion efficiency is mainly affected by the density of dust. Compared with loose dust, the bonding dust has a greater impact on the photothermal conversion efficiency and comprehensive efficiency. When the density of loose dust changes from 0 to 33.79 g/m2, the decline rate of photothermal efficiency is only 2.32% and the decline rate of photoelectric efficiency is 48.65%. In this experiment, the working temperature of photovoltaic cells are 53.99, 52.92, 50.73 and 55.58 ℃, respectively with the increase of the dust density, the trend of the working temperature of photovoltaic cells tends to decrease first and then increase. Therefore, a small amount of dust will not rise the working temperature of the photovoltaic cell and will not affect the normal operation of the solar PV/T system.

关键词

太阳能集热器 / 光伏组件 / 集热效率 / PV/T / 灰尘问题 / 积尘形态 / 积尘密度

Key words

solar collectors / solar modules / collector efficiency / PV/T / dust problems / morphology of dust / density of dust

引用本文

导出引用
张东, 俞凯, 景金龙, 刘畅, 安周建, 李秉阳. 积尘形态及密度对太阳能PV/T系统的性能影响研究[J]. 太阳能学报. 2023, 44(5): 171-177 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1596
Zhang Dong, Yu Kai, Jing Jinlong, Liu Chang, An Zhoujian, Li Bingyang. EFFECT OF DUST MORPHOLOGY AND DENSITY ON PERFORMANCE OF SOLAR PV/T SYSTEM[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 171-177 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1596
中图分类号: TK519   

参考文献

[1] IEA-PVPS. Snapshot2021[R/OL]. https://iea-pvps.org/snapshot-reports/snapshot-2021/.
[2] CHANDRASEKAR M, SURESH S, SENTHILKUMAR T, et al.Passive cooling of standalone flat PV module with cotton wick structures[J]. Energy conversion and management, 2013, 71(7): 43-50.
[3] CHOW T T.A review on photovoltaic/thermal hybrid solar technology[J]. Applied energy, 2010, 87(2): 365-379.
[4] SARDARABADI M, PASSANDIDEH-FARD M, HERIS S Z.Experimental investigation of the effects of silica/water nanofluid on PV/T(photovoltaic thermal units)[J]. Energy, 2014, 66: 264-272.
[5] AHMED O K, MOHAMMED Z A.Dust effect on the performance of the hybrid PV/Thermal collector[J]. Thermal science and engineering progress, 2017, 3: 114-122.
[6] PARK S R, PANDEY A K, TYAGI V V, et al.Energy and exergy analysis of typical renewable energy systems[J]. Renewable and sustainable energy reviews, 2014, 30(2): 105-23.
[7] SALARI A, HAKKAKI-FARD A.A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems[J]. Renewable energy, 2019, 135: 437-449.
[8] 董丹, 秦红, 刘重裕, 等. 太阳能光伏/热(PV/T)技术的研究进展[J]. 化工进展, 2013, 32(5): 1020-1024.
DONG D, QIN H, LIU C Y, et al.Research progress of solar photovoltaic/thermal(PV/T) technology[J]. Chemical industry progress, 2013, 32(5): 1020-1024.
[9] 郭超, 季杰, 孙炜, 等. 多功能太阳能PV/T集热器的光电/光热性能研究[J]. 太阳能学报, 2017, 38(2): 372-377.
GUO C, JI J, SUN W, et al.Photoelectric/photothermal performance of multifunctional solar PV/T collectors[J]. Acta energiae solaris sinica, 2017, 38(2): 372-377.
[10] CHANCHANGI Y N, GHOSH A, SUNDARAM S, et al.Dust and PV performance in Nigeria: a review[J]. Renewable and sustainable energy reviews, 2020, 121: 1364-0321.
[11] KAZEM H A, CHAICHAN M T, AL-WAELI A H, et al. Effect of shadows on the performance of solar photovoltaic[C]//Mediterranean Green Buildings & Renewable Energy, Springer International Publishing, Switzerland, 2017.
[12] GHOLAMI A, ALEMRAjABI A A, SABOONCHI A. Experimental study of self-cleaning property of titanium dioxide and nanospray coatings in solar applications[J]. Solar energy, 2017, 157: 559-565.
[13] LORENZO E, MORETON R, LUQUE I.Dust effects on PV array performance: in-field observations with non-uniform patterns[J]. Progress in photovoltaics: research and applications, 2014, 22: 666-670.
[14] MARZBAND M, GHADIMI M, SUMPER A, et al.Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode[J]. Applied energy, 2014, 128(3): 164-174.
[15] SARVER T, AL-QARAGHULI A, KAZMERSKI L L.A comprehensive review of the impact of dust on the use of solar energy: history, investigations, results, literature, and mitigation approaches[J]. Renewable and sustainable energy reviews, 2013, 22: 698-733.
[16] KALOGIROU S A, AGATHOKLEOUS R, PANAYIOTOU G.On-site PV characterization and the effect of soiling on their performance[J]. Energy, 2013, 51(3): 439-446.
[17] PAUDYAL B R, SHAKYA S R.Dust accumulation effects on efficiency of solar PV modules for off grid purpose: a case study of Kathmandu[J]. Solar energy, 2016, 135(10): 103-110.
[18] EL-SHOBOKSHY M S, HUSSEIN F M. Effect of dust with different physical properties on the performance of photovoltaic cells[J]. Solar energy, 1993, 51(6): 505-511.
[19] 杨金焕, 毛家俊, 陈中华. 不同方位倾斜面上太阳辐射量及最佳倾角的计算[J]. 上海交通大学学报, 2002, 36(7): 1032-1036.
YANG J H, MAO J J, CHEN Z H.Calculation of solar radiation on variously oriented tilted surface and optimum tilt angle[J]. Journal of Shanghai Jiaotong University, 2002, 36(7): 1032-1036.
[20] JUBAYER C M, HANGAN H.Numerical simulation of wind effects on a stand-alone ground mounted photovoltaic (PV) system[J]. Journal of wind engineering & industrial aerodynamics, 2014, 134: 56-64.
[21] 中国疾病预防控制中心环境与健康相关产品安全所, 江苏省疾病预防控制中心, 深圳市疾病预防控制中心. 公共场所集中空调通风系统卫生规范[M]. 中华人民共和国卫生部, 2012: 1-28.
Institute of Environment and Health Related Product Safety of China Center for Disease Control and Prevention, Jiangsu Center for Disease Control and Prevention, Shenzhen Center for Disease Control and Prevention. Hygienic code for central air conditioning and ventilation system in public places[M]. Ministry of Health of the People’s Republic of China, 2012: 1-28.
[22] SHAHSAVAR A, AMERI M.Experimental investigation and modeling of a direct-coupled PV/T air collector[J]. Solar energy, 2010, 84(11): 1938-1958.
[23] 王江江, 杨昆, 刘娟娟. 生物质燃气冷热电联供系统性能分析[J]. 农业机械学报, 2014, 45(3): 196-205.
WANG J J, YANG K, LIU J J.Performance analysis of a biogas combined cooling heating and power system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(3): 196-205.
[24] 李安桂, 张婉卿, 史丙金, 等. 不同积尘形态下平板集热器换热性能试验研究[J]. 西安建筑科技大学学报(自然科学版), 2018, 50(5): 722-729.
LI A G, ZHANG W Q, SHI B J, et al.Experimental study on heat exchange performance of flat-plate solar collectors with different dust accumulation forms[J]. Journal of Xi’an University of Architecture & Technology(natural science edition), 2018, 50(5): 722-729.

基金

国家自然科学基金(51806093); 甘肃省教育厅青年博士基金(2021QB-046); 甘肃省教育厅产业支撑计划(2021CYZC-27); 甘肃省重点研发计划(22YF7GA162)

PDF(1983 KB)

Accesses

Citation

Detail

段落导航
相关文章

/