该研究制备高电导、高透明的磷掺杂氢化纳米晶硅氧(nc-SiOx:H)薄膜,应用于晶硅异质结(SHJ)太阳电池的窗口层以替代传统的氢化非晶硅(a-Si:H)薄膜。与以a-Si:H薄膜为窗口层的电池相比,短路电流密度提高0.5 mA/cm2,达到38.5 mA/cm2,填充因子为82.7%,光电转换效率为23.5%。实验发现,在nc-SiOx:H薄膜沉积前对本征非晶硅层表面进行处理,沉积1 nm纳米晶硅(nc-Si:H)种子层,可改善nc-SiOx:H薄膜的晶化率,降低薄膜中的非晶相含量。与单层nc-SiOx:H窗口层的电池相比,nc-Si:H/nc-SiOx:H叠层结构提高电池填充因子,达到83.4%,光电转换效率增加了0.3%,达到23.8%。
Abstract
In this work, the highly conductive, highly transparent phosphorus-doped hydrogenated nanocrystalline silicon oxide (nc-SiOx:H) film is prepared, which is successfully applied as the window layer of silicon heterojunction (SHJ) cells to replace the traditional hydrogenated amorphous silicon (a-Si:H) film. Compared with the cell with a-Si:H thin film as the window layer, the short-circuit current density can be increased by 0.5 mA/cm2 to 38.5 mA/cm2, the fill factor is 82.7%, and the efficiency is 23.5%. In addition, the intrinsic amorphous silicon layer was surface treated before nc-SiOx:H film deposition. The deposition of 1 nm nanocrystalline silicon seed layer can improve the crystallinity of nc-SiOx:H film and reduce the content of amorphous phase in the film. Compared with the fill factor of the cell with nc-SiOx:H film, the fill factor of the cell with nc-Si:H/ nc-SiOx:H stacked thin films is increased to 83.4%, and the efficiency increased by 0.3% to 23.8%.
关键词
纳米晶材料 /
太阳电池 /
薄膜生长 /
晶硅异质结太阳电池 /
纳米晶硅氧(nc-SiOx:H) /
界面处理
Key words
nanocrystalline materials /
solar cells /
film growth /
silicon heterojunction solar cells /
hydrogenated nanocrystalline silicon oxide (nc-SiOx:H) /
interface treatment
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] TAGUCHI M.Review: development history of high efficiency silicon heterojunction solar cell: from discovery to practical use[J]. ECS journal of solid state science and technology, 2021, 10(2): 025002.
[2] 姚宇波, 张丽平, 刘文柱, 等. 不同背反射结构在硅异质结太阳电池中的应用研究[J]. 太阳能学报, 2022, 43(10): 37-42.
YAO Y B, ZHANG L P, LIU W Z, et al.Research on application of different back reflection structures in silicon heterojunction solar cells[J]. Acta energiae solaris sinica, 2022, 43(10): 37-42.
[3] LIN H, YANG M, RU X N, et al.Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers[J]. Nature energy, 2023: 1-11.
[4] RICHTER A, HERMLE M, GLUNZ S W, Reassessment of the limiting efficiency for crystalline silicon solar cells[J]. IEEE journal of photovoltaics, 2013, 3(4): 1184-1191.
[5] UMISHIO H, SAI H, KOIDA T, et al.Nanocrystalline-silicon hole contact layers enabling efficiency improvement of silicon heterojunction solar cells: impact of nanostructure evolution on solar cell performance[J]. Progress in photovoltaics: research and applications, 2021, 29(3): 344-356.
[6] GABRIEL O, KIRNER S, KLINGSPORN M, et al.On the plasma chemistry during plasma enhanced chemical vapor deposition of microcrystalline silicon oxides[J]. Plasma processes and polymers, 2015, 12(1): 82-91.
[7] ZHAO Y F, MAZZARELLA L, PROCEL P, et al.Doped hydrogenated nanocrystalline silicon oxide layers for high-efficiency c-Si heterojunction solar cells[J]. Progress in photovoltaics: research and applications, 2020, 28(5): 425-435.
[8] ZHOU J H, IKUTA K, YASUDA T, et al.Growth of amorphous-layer-free microcrystalline silicon on insulating glass substrates by plasma-enhanced chemical vapor deposition[J]. Applied physics letters, 1997, 71(11): 1534-1536.
[9] MAZZARELLA L, KIRNER S, GABRIEL O, et al.Nanocrystalline silicon emitter optimization for Si-HJ solar cells: substrate selectivity and CO2 plasma treatment effect[J]. Physica status solidi (a), 2017, 214(2): 1532958.
[10] YAN L L, HUANG S L, REN H Z, et al.Bifunctional CO2 plasma treatment at the i/p interface enhancing the performance of planar silicon heterojunction solar cells[J]. Physica status solidi (RRL)-rapid research letters, 2021, 15(12): 2100010.
[11] MORRAL A F, CABARROCAS P R, CLERC C.Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements[J]. Physical review B, 2004, 69(12): 125307.
[12] REEVES G K, HARRISON H B.Obtaining the specific contact resistance from transmission line model measurements[J]. IEEE electron device letters, 1982, 3(5): 111-113.
[13] WERNER K.Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology[J]. RCA review, 1970, 31: 187-205.
[14] LIU W Z, ZHANG L P, YANG X B, et al.Damp-heat-stable, high-efficiency, industrial-size silicon heterojunction solar cells[J]. Joule, 2020, 4(4): 913-927.
[15] HUANG S L, LIU W Z, LI X D, et al.Prolonged annealing improves hole transport of silicon heterojunction solar cells[J]. Physica status solidi(RRL)-rapid research letters, 2021, 15(12): 2100015.
[16] LUCOVSKY G, YANG J, CHAO S S, et al.Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films[J]. Physical review B, 1983, 28(6): 3225-3233.
[17] SHARMA M, PANIGRAHI J, KOMARALA V K.Nanocrystalline silicon thin film growth and application for silicon heterojunction solar cells: a short review[J]. Nanoscale advances, 2021, 3(12): 3373-3383.
[18] WEN C, XU H, HE W, et al.Tuning oxygen impurities and microstructure of nanocrystalline silicon photovoltaic materials through hydrogen dilution[J]. Nanoscale research letters, 2014, 9(1): 1-9.
[19] IQBAL Z, VEPŘEK S, WEBB A P, et al. Raman scattering from small particle size polycrystalline silicon[J]. Solid state communications, 1981, 37(12): 993-996.
基金
国家自然科学基金(62004208); 国家自然科学基金(62074153); 中国科学院“鸿鹄专项”(XDA17020403); 上海市科技创新行动(22ZR1473200)