不同生物质原料的气化合成制航煤的环境影响评价

潘小天, 仲兆平, 汪维, 郑翔, 沈钊丞, 邓玥

太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 10-16.

PDF(2879 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2879 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 10-16. DOI: 10.19912/j.0254-0096.tynxb.2021-1601

不同生物质原料的气化合成制航煤的环境影响评价

  • 潘小天1,2, 仲兆平1,2, 汪维1,2, 郑翔1,2, 沈钊丞1,2, 邓玥1,2
作者信息 +

ENVIRONMENTAL IMPACT ASSESSMENT OF GASIFICATION SYNTHESIS OF DIFFERENT BIOMASS FOR PRODUCTION OF JET FUEL

  • Pan Xiaotian1,2, Zhong Zhaoping1,2, Wang Wei1,2, Zheng Xiang1,2, Shen Zhaocheng1,2, Deng Yue1,2
Author information +
文章历史 +

摘要

采用生命周期评价方法对玉米秸秆、稻壳和杨木3种生物质的气化合成航空煤油工艺路线进行环境影响评价。选取全球变暖、酸化、富营养化、光化学污染、人体毒性和固体废弃物6种环境影响类型,对3种工艺路线的全生命周期进行环境影响潜值计算。计算结果表明:系统全生命周期中生产阶段排放最多的是CO2,占比为69.13%~74.36%;运输阶段环境影响最小,在各环境影响潜值中占比不足7%;玉米秸秆是3种生物质中环境影响最小的原料,减少费托合成反应器的耗电量可降低玉米秸秆工艺的环境影响。

Abstract

The life cycle assessment method was used to evaluate the environmental impact of the gasification synthesis for the production of jet fuel from three types of biomass: maize stover, rice husk and poplar wood. Six types of environmental impacts, including global warming, acidification, eutrophication, photochemical ozone formation, human toxicity and solid waste, were selected to calculate the potential environmental impact of the three processes over their entire life cycles. The calculation results show that highest CO2 emissions in the production phase throughout the life cycle, with emission accounting for 69.13%-74.36%; minimal environmental impact during the transport phase, with each environmental impact potential accounting for less than 7%; maize stover is with the lowest environmental impact among the three biomass, and reducing the power consumption of the Fischer-Tropsch reactor can reduce the environmental impact of the maize stover process.

关键词

生物质能 / 生命周期 / 环境影响 / 航空煤油 / 气化合成 / 清单分析

Key words

biomassenergy / life cycle / environmental impact / jet coal / gasification synthesis / inventory analysis

引用本文

导出引用
潘小天, 仲兆平, 汪维, 郑翔, 沈钊丞, 邓玥. 不同生物质原料的气化合成制航煤的环境影响评价[J]. 太阳能学报. 2023, 44(5): 10-16 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1601
Pan Xiaotian, Zhong Zhaoping, Wang Wei, Zheng Xiang, Shen Zhaocheng, Deng Yue. ENVIRONMENTAL IMPACT ASSESSMENT OF GASIFICATION SYNTHESIS OF DIFFERENT BIOMASS FOR PRODUCTION OF JET FUEL[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 10-16 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1601
中图分类号: TK6   

参考文献

[1] DE JONG S, ANTONISSEN K, HOEFNAGELS R, et al.Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production[J]. Biotechnology for biofuels, 2017, 10(1): 64-75.
[2] 陶炜, 肖军, 杨凯. 生物质气化费托合成制航煤生命周期评价[J]. 中国环境科学, 2018, 38(1): 383-391.
TAO W, XIAO J, YANG K.Life cycle assessment of jet fuel from biomass gasification and Fischer-Tropsch synthesis[J]. China environmental science, 2018, 38(1): 383-391.
[3] FORTIER M O P, ROBERTS G W,STAGG-WILLIAMS S M, et al. Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae[J]. Applied energy, 2014, 122(5): 73-82.
[4] 杨凯, 陶炜, 肖军. 生物质气化费托合成航空煤油的生命周期火用分析[J]. 发电设备, 2018, 32(4): 246-252.
YANG K, TAO W, XIAO J.Exergetic life cycle assessment of jet fuel from biomass gasification and Fischer-Tropsch synthesis[J]. Power equipment, 2018, 32(4): 246-252.
[5] FINNVEDEN G, HAUSCHILD M Z, EKVALL T, et al.Recent developments in life cycle assessment[J]. Journal of environmental management, 2009, 91(1): 1-21.
[6] KIM J K, PARK J Y, YIM E S, et al.Bio-jet fuel production technologies for GHG reduction in aviation sector[J]. Transactions of the Korean Hydrogen and New Energy Society, 2015, 26(6): 609-628.
[7] FAN J Q, SHONNARD D R, KALNES T N, et al.A life cycle assessment of pennycress(Thlaspi arvense L.)-derived jet fuel and diesel[J]. Biomass & bioenergy, 2013, 55: 87-100.
[8] 国家发展和改革委员会价格司. 全国农产品成本收益资料汇编-2021[M]. 北京: 中国统计出版社, 2021.
Price Department of National Development and Reform Commission. National compilation of cost and benefit information on agricultural products-2021[M]. Beijing: China Statistics Press, 2021.
[9] 于点. 生物质基航空燃料制备工艺系统仿真、火用析及全生命周期评价[D]. 南京: 东南大学, 2018.
YU D.System simulation exergy analysis and life cycle assessment of biological fuel preparation process[D]. Nanjing: Southeast University, 2018.
[10] GUO M, LITTLEWOOD J, JOYCE J, et al.The environmental profile of bioethanol produced from current and potential future poplar feedstocks in the EU[J]. Green chemistry, 2014, 16(11): 4680-4695.
[11] 瞿婷婷, 肖军, 沈来宏. 生物质制取高品位液体燃料的生命周期评价[J]. 太阳能学报, 2014, 35(9): 1700-1707.
QU T T, XIAO J, SHEN L H.Life cycle assessment of high-quality liquid fuels from biomass[J]. Acta energiae solaris sinica, 2014, 35(9): 1700-1707.
[12] 曹溢, 沈辉. 秸秆发电过程中原料收集的成本分析[J]. 电力与能源, 2012, 33(5): 463-466.
CAO Y, SHEN H.A research on collection cost in the process of stover power generation[J]. Power & energy, 2012, 33(5): 463-466.
[13] ZANG G Y, TEJASVI S, RATNER A, et al.A comparative study of biomass integrated gasification combined cycle power systems: performance analysis[J]. Bioresource technology, 2018, 255: 246-256.
[14] SCHWEIER J, MOLINA-HERRERA S, GHIRARDO A, et al.Environmental impacts of bioenergy wood production from poplar short-rotation coppice grown at a marginal agricultural site in Germany[J]. Global change biology bioenergy, 2017, 9(7): 1207-1221.

基金

国家重点研发计划(2018YFB1501400)

PDF(2879 KB)

Accesses

Citation

Detail

段落导航
相关文章

/