附着液滴的玻璃层太阳辐射传递模型

王衍金, 熊金涛, 杨伟彬, 贺方艺, 王倩, 吕智海

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 179-185.

PDF(2523 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2523 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 179-185. DOI: 10.19912/j.0254-0096.tynxb.2021-1603

附着液滴的玻璃层太阳辐射传递模型

  • 王衍金, 熊金涛, 杨伟彬, 贺方艺, 王倩, 吕智海
作者信息 +

SOLAR RADIATION TRANSMISSION MODEL OF GLASS LAYER WITH ATTACHED DROPLETS

  • Wang Yanjin, Xiong Jintao, Yang Weibin, He Fangyi, Wang Qian, Lyu Zhihai
Author information +
文章历史 +

摘要

针对液滴和玻璃层的太阳辐射传递特点,提出附着液滴玻璃层的太阳辐射传递模型。将入射的太阳辐射进行直散分离,基于蒙特卡洛射线追踪法对直射辐射光学性能进行计算,同时将入射角进行离散,分别在各角度范围内采用蒙特卡洛射线追踪法的直射辐射原理计算散射辐射光学性能。为了对模型进行验证,通过实验测试液滴覆盖率和太阳入射角对附着液滴玻璃层光学性能的影响,并与模型计算结果进行比较。结果表明:实验结果与计算结果差别较小,总透过率最大误差仅约为0.05,模型的准确性较高。附着液滴的玻璃层能有效降低太阳辐射透过率,且太阳辐射透过率随液滴覆盖率的增大而减小,随入射角的增大而减小。

Abstract

A solar radiation transmission model with droplets attached to the glass layer is proposed based on characteristics of solar radiation transmission between droplets and the glass layer. The incident solar radiation is splitted into the direct radiation and the diffuse radiation parts, and the Monte Carlo ray tracing method is used to calculate the transmittance, reflectance and absorptance of the glass layer with attached droplets. At the same time, the incident angle is divided into sub-angles, and the Monte Carlo ray tracing method is used to calculate the optical performance of the diffuse radiation in each sub-angle. In order to verify the proposed model, the effect of the droplet coverage and the solar incident angle on the optical performance of the glass layer with attached droplets was tested experimentally, and the measured results and the calculated results are compared. The results show that the difference between the experimental results and the calculated results is small. The maximum error of the total transmittance is only about 0.05, and the model has high accuracy. The droplets attached to the glass layer can effectively reduce the solar radiation transmittance, which decreases with the increase of the droplet coverage and the incident angle.

关键词

玻璃 / 液滴 / 太阳辐射 / 蒙特卡洛方法 / 建筑能耗

Key words

glass / droplet / solar radiation / Monte Carlo method / building energy consumption

引用本文

导出引用
王衍金, 熊金涛, 杨伟彬, 贺方艺, 王倩, 吕智海. 附着液滴的玻璃层太阳辐射传递模型[J]. 太阳能学报. 2022, 43(12): 179-185 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1603
Wang Yanjin, Xiong Jintao, Yang Weibin, He Fangyi, Wang Qian, Lyu Zhihai. SOLAR RADIATION TRANSMISSION MODEL OF GLASS LAYER WITH ATTACHED DROPLETS[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 179-185 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1603
中图分类号: TU111.4   

参考文献

[1] DOMINGUEZ-TORRES C A, LEON-RODRIGUEZ A L, SUAREZ R, et al. Numerical and experimental validation of the solar radiation transfer for an egg-crate shading device under Mediterranean climate conditions[J]. Solar energy, 2019, 183: 755-767
[2] 洪铭, 冯朝卿, 郑宏飞, 等. 用于玻璃幕墙的透射式太阳能聚光系统研究[J]. 太阳能学报, 2020, 41(1): 13-19.
HONG M, FENG C Q, ZHENG H F, et al.Study of transmissive solar concentrating system for glass curtain wall[J]. Acta energiae solaris sinica, 2020, 41(1): 13-19.
[3] ZHANG C X, SHI X H, LI T J, et al.Determining the effects of droplets attached to glass on light transmission by using Monte Carlo ray tracing method in target optical detection[J]. Journal of quantitative spectroscopy & radiative transfer, 2020, 245: 106856.
[4] ZHANG C X, LI T J, YUAN Y, et al.Effects of droplets in the air on light transmission in target optical detection[J]. Optics and lasers in engineering, 2020, 128: 106044.
[5] ZHU K Y, LI S L, PILON L.Light transfer through windows with external condensation[J]. Journal of quantitative spectroscopy & radiative transfer, 2018, 208: 164-171.
[6] ZHU K Y, PILON L.Transmittance of transparent windows with non-absorbing cap-shaped droplets condensed on their backside[J]. Journal of quantitative spectroscopy & radiative transfer, 2017, 194 : 98-107.
[7] ZHU K Y, PILON L.Transmittance of semitransparent windows with absorbing cap-shaped droplets condensed on their backside[J]. Journal of quantitative spectroscopy & radiative transfer, 2017, 201 : 53-63.
[8] LIN Q Q, XUAN Y M, HAN Y G.The effect of randomly-distributed droplets on thermal radiation of surfaces[J]. International journal of heat and mass transfer, 2016, 96 : 231-241.
[9] LI Q, ZHU X Y, XUAN Y M.Modeling heat generation in high power density nanometer scale GaAs/InGaAs/AlGaAs PHEMT[J]. International journal of heat and mass transfer, 2015, 81 : 130-136.
[10] TZOUMANIKAS P, NIKITIDOU E, BAIS A F, et al.The effect of clouds on surface solar irradiance, based on data from an all-sky imaging system[J]. Renewable energy, 2016, 95: 314-322.
[11] RANGANATHAN R, MIKHAEL W, KUTKUT N, et al.Adaptive sun tracking algorithm for incident energy maximization and efficiency improvement of PV panels[J]. Renewable energy, 2011, 36(10): 2623-2626.
[12] LIU F S, KANG N, LI Y K, et al.Experimental investigation on the spray characteristics of a droplet under sinusoidal inertial force[J]. Fuel, 2018, 226: 156-162.
[13] HUANG Y H, JIANG L K, LI B W, et al.Study effects of particle size in metal nanoink for electrohydrodynamic inkjet printing through analysis of droplet impact behaviors[J]. Journal of manufacturing processes, 2020, 56: 1270-1276.
[14] ZHANG X Q, QIN Y Z.Contact angle hysteresis of a water droplet on a hydrophobic fuel cell surface[J]. Journal of colloid and interface science, 2019, 545 : 231-241.
[15] 董佰扬, 单彦广, 翁志浩. 基于动态接触角的固着液滴蒸发过程模拟[J]. 动力工程学报, 2020, 40(12): 59-64.
DONG B Y, SHAN Y G, WENG Z H.Simulation of sessile droplet evaporation based on dynamic contact angle[J]. Chinese journal of power engineering, 2020, 40(12): 59-64.
[16] YU Y L, ZHU H P, FRANTZ J M, et al.Evaporation and coverage area of pesticide droplets on hairy and waxy leaves[J]. Biosystems engineering, 2009, 104(3): 324-334.
[17] SIDAWI K, MOROZ P, CHANDRA S.On surface area coverage by an electrostatic rotating bell atomizer[J]. Journal of coatings technology and research, 2021, 18(3): 649-663.
[18] LIU B, YUAN Y, LI S, et al.Simulation of light-field camera imaging based on ray splitting Monte Carlo method[J]. Optics communications, 2015, 355: 15-26.
[19] 戴贵龙, 夏雨婷, 谢林毅, 等. 半透明玻璃管束吸热芯聚集太阳光传输特性分析[J]. 太阳能学报, 2020, 41(7): 222-226.
DAI G L, XIA Y T, XIE L Y, et al.Transferring performances of concentrated sunlight inside quartz glass pipe bundle absorber[J]. Acta energiae solaris sinica, 2020, 41(7): 222-226.
[20] HALE G M, QUERRY M R.Optical Constants of water in the 200-nm to 200-um wavelength region[J]. Applied optics, 1973, 12(3): 555-563.
[21] RUBIN M.Optical properties of soda lime silica glasses[J]. Solar energy materials, 1985, 12(4): 275-288.
[22] 扶祺高, 陈友明, 王衍金, 等. 遮阳百叶散射-散射积分模型[J]. 太阳能学报, 2017, 38(10): 2770-2777.
FU Q G, CHEN Y M, WANG Y J, et al.Diffuse-diffuse integral model for shade blinds[J]. Acta energiae solaris sinica, 2017, 38(10): 2770-2777.

基金

国家自然科学基金(52068021); 江西省自然科学基金(20202BABL204060); 江西省教育厅科技项目(GJJ190301)

PDF(2523 KB)

Accesses

Citation

Detail

段落导航
相关文章

/