利用中国40个地面台站观测资料对ERA5再分析资料太阳能资源要素进行误差评估,结果表明:ERA5资料与台站资料的地表月水平面总辐射回归方程可决系数为0.999。ERA5资料与各台站资料均方根误差最大值为8.7 MJ/m2,平均值为4.9 MJ/m2;相对均方根误差最大值为2.4%,平均值为1.0%。ERA5资料与各台站资料年际变化误差最大值为19 MJ/m2,平均值为3 MJ/m2;百分比年际变化误差最大值为0.5%,平均值为0.1%。ERA5资料与台站资料稳定度误差最大值为0.013,平均值为0.003;百分比误差最大值为2.9%,平均值为0.8%。ERA5资料与台站资料具有较好的一致性,应用于中国太阳能资源评估是可行的。
Abstract
The error of solar energy resource parameters from ERA5 reanalysis data is evaluated based on parameters from data of 40 ground observation stations around China. The results show that the regression equations’ coefficient of determination (R2) of the monthly surface global horizontal irradiance from ERA5 data against that from stations is 0.999. The maximum and average root mean square error (RMSE) between data from ERA5 and stations are 8.7 MJ/m2 and 4.9 MJ/m2, and the maximum and average relative root mean square error (RRMSE) are 2.4% and 1.0%. The maximum and average error of inter-annual variability (IV) between data from ERA5 and stations are 19 MJ/m2 and 3 MJ/m2, and the maximum and average error of percentage inter-annual variability (PIV) are 0.5% and 0.1%. The maximum and average error of stability between data from ERA5 and stations are 0.013 and 0.003, and the maximum and average percentage errors are 2.9% and 0.8%. ERA5 data is validated in this study to be of good consistency with the observation stations data, and application of ERA5 data to solar energy resource assessment in China is feasible.
关键词
太阳能 /
太阳辐射 /
太阳能资源 /
ERA5 /
年际变化 /
稳定度
Key words
solar energy /
solar radiation /
solar energy resource /
ERA5 /
inter-annual variability /
stability
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 闫云飞, 张智恩, 张力, 等. 太阳能利用技术及其应用[J]. 太阳能学报, 2012, 33(增刊1): 47-56.
YAN Y F, ZHANG Z E, ZHANG L, et al.Application and utilization technology of solar energy[J]. Acta energiae solaris sinica, 2012, 33(S1): 47-56.
[2] 李柯, 何凡能. 中国陆地太阳能资源开发潜力区域分析[J]. 地理科学进展, 2010, 29(9): 1049-1054.
LI K, HE F N.Analysis on mainland China’s solar energy distribution and potential to utilize solar energy as an alternative energy source[J]. Progress in geography, 2010,29(9): 1049-1054.
[3] 中国电力企业联合会. 中国电力行业年度发展报告2022[M]. 北京: 中国建材工业出版社, 2022: 252-256.
China Electricity Council.Annual report on development of China power industry 2022[M]. Beijing: China Building Materials Press, 2022: 252-256.
[4] 周亚敏. 以碳达峰与碳中和目标促我国产业链转型升级[J]. 中国发展观察, 2021(增刊1): 56-58.
ZHOU Y M.Promoting the transformation and upgrading of China’s industrial chain with the goal of carbon peak and carbon neutralization[J]. China development observation, 2021(Z1): 56-58.
[5] 袁小康, 谷晓平, 王济. 中国太阳能资源评估研究进展[J]. 贵州气象, 2011, 35(5): 1-4.
YUAN X K, GU X P, WANG J.Advances in study on solar energy resource assessment in China[J]. Journal of Guizhou meteorology, 2011, 35(5): 1-4.
[6] 冯蕾, 张金生, 廖海燕, 等. 基于现场实测的宁夏太阳山地区太阳能资源特征分析[J]. 太阳能学报, 2020, 41(12): 146-153.
FENG L, ZHANG J S, LIAO H Y, et al.Characteristics analysis of solar energy resource in Taiyangshan region of Ningxia based on observation station data[J]. Acta energiae solaris sinica, 2020, 41(12): 146-153.
[7] 申彦波. 近20年卫星遥感资料在我国太阳能资源评估中的应用综述[J]. 气象, 2010, 36(9): 111-115.
SHEN Y B.Review of applications of satellite remote sensing data to solar energy resources assessment in China in recent 20 years[J]. Meteorological monthly, 2010, 36(9): 111-115.
[8] YANG D Z, BRIGHT J M.Worldwide validation of 8 satellite-derived and reanalysis solar radiation products: a preliminary evaluation and overall metrics for hourly data over 27 years[J]. Solar energy, 2020, 210: 3-19.
[9] HOFFMANN L, GUNTHER G, LI D, et al.From ERA-Interim to ERA5: the considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations[J]. Atmospheric chemistry and physics, 2019, 19(5): 3097-3124.
[10] GB/T 37526—2019, 太阳能资源评估方法[S].
GB/T 37526—2019, Assessment method for solar energy resource[S].
基金
国家重点研发计划(2018YFA0605703)