伸缩式斜柱对垂直轴风力机气动性能影响研究

欧华浩, 叶舟, 刘青松, 李根, 罗帅, 李春

太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 376-383.

PDF(2513 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2513 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 376-383. DOI: 10.19912/j.0254-0096.tynxb.2021-1616

伸缩式斜柱对垂直轴风力机气动性能影响研究

  • 欧华浩1, 叶舟1,2, 刘青松1, 李根1, 罗帅1, 李春1,2
作者信息 +

STUDY ON EFFECT OF TELESCOPIC INCLINED COLUMNS ON AERODYNAMIC PERFORMANCE OF VERTICAL AXIS WIND TURBINE

  • Ou Huahao1, Ye Zhou1,2, Liu Qingsong1, Li Gen1, Luo Shuai1, Li Chun1,2
Author information +
文章历史 +

摘要

为改善垂直轴风力机动态失速特性,提出一种可随风力机方位角变化而自动伸缩的斜柱结构翼型。以NACA0021翼型为研究对象,采用数值模拟方法,分析其对垂直轴风力机动态气动性能的影响。结果表明:伸缩式斜柱在作用方位角内可显著抑制流动分离并提高垂直轴风力机转矩,最大风能利用系数较原始翼型提高13.6%;同时,伸缩式斜柱可使最佳工况点向低尖速比偏移,提高整机运行过程中的稳定性。

Abstract

In order to improve the dynamic stall characteristics of vertical axis wind turbine, an airfoil with inclined column structure that can automatically expand and contract with the change of wind turbine azimuth angle is proposed. Taking the NACA0021 airfoil as the research object, the numerical simulation method is used to analyze its influence on the dynamic aerodynamic performance of the vertical axis wind turbine. The results show that the telescopic inclined column can significantly suppress the flow separation and increase the torque of the vertical axis wind turbine within the action phase angle, and the maximum power coefficient is increased by 13.6% compared with the original airfoil. At the same time, the telescopic inclined column can make the best working point offset to low tip speed ratio to improve the stability of the VAWT during operation.

关键词

垂直轴风力机 / 主动控制 / 流动分离 / 气动性能 / 伸缩式斜柱 / 尖速比

Key words

vertical axis wind turbine / active control / flow separation / aerodynamic performance / telescopic inclined column / tip speed ratio

引用本文

导出引用
欧华浩, 叶舟, 刘青松, 李根, 罗帅, 李春. 伸缩式斜柱对垂直轴风力机气动性能影响研究[J]. 太阳能学报. 2023, 44(5): 376-383 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1616
Ou Huahao, Ye Zhou, Liu Qingsong, Li Gen, Luo Shuai, Li Chun. STUDY ON EFFECT OF TELESCOPIC INCLINED COLUMNS ON AERODYNAMIC PERFORMANCE OF VERTICAL AXIS WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 376-383 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1616
中图分类号: TK83   

参考文献

[1] WANG Y B, MIAO W P, DING Q W, et al.Numerical investigations on control strategies of wake deviation for large wind turbines in an offshore wind farm[J]. Ocean engineering, 2019, 173: 794-801.
[2] 李春, 叶舟, 高伟. 现代大型风力机设计原理[M]. 上海: 上海科学技术出版社, 2013.
LI C, YE Z, GAO W.Modern large-scale wind turbine design principle[M]. Shanghai: Shanghai Science and Technology Press, 2013.
[3] HOWELL R, QIN N, EDWARDS J, et al.Wind tunnel and numerical study of a small vertical axis wind turbine[J]. Renewable energy, 2010, 35(2): 412-422.
[4] 李春, 叶舟, 高伟. 垂直轴风力机原理与设计[M]. 上海: 上海科学技术出版社, 2013.
LI C, YE Z, GAO W.Wind turbine design with emphasis on Darrieus concept[M]. Shanghai: Shanghai Science and Technology Press, 2013.
[5] MIAO W P, LI C, WANG Y B, et al.Study of adaptive blades in extreme environment using fluid-structure interaction method[J]. Journal of fluids and structures, 2019, 91: 102734.
[6] BELAMADI R, DJEMILI A, ILINCA A, et al.Aerodynamic performance analysis of slotted airfoils for application to wind turbine blades[J]. Journal of wind engineering & industrial aerodynamics, 2016, 151: 79-99.
[7] 祖红亚, 李春, 李润杰, 等. 襟翼相对长度对翼型气动性能的影响[J]. 动力工程学报, 2015, 35(8): 666-673, 692.
ZU H Y, LI C, LI R J, et al.Effect of relative flap length on aerodynamic performance of the airfoil[J]. Journal of Chinese Society of Power Engineering, 2015, 35(8): 666-673, 692.
[8] LIU Y, LI P F, HE W, et al.Numerical study of the effect of surface grooves on the aerodynamic performance of a NACA 4415 airfoil for small wind turbines[J]. Journal of wind engineering & industrial aerodynamics, 2020, 206: 104263.
[9] BRAMESFELD G, MAUGHMER M D.Experimental investigation of self-actuating, upper-surface, high-lift-enhancing effectors[J]. Journal of aircraft, 2002, 39(1): 120-124.
[10] 詹枞州, 叶舟, 李春, 等. 弹片参数对风力机叶片翼型气动性能影响研究[J]. 热能动力工程, 2019, 34(10): 185-192.
ZHAN Z Z, YE Z, LI C, et al.Study on influence of shrapnel parameters on aerodynamic performance of wind turbine blade airfoil[J]. Journal of engineering for thermal energy and power, 2019, 34(10): 185-192.
[11] BIANCHINI A, BALDUZZI F, ROSA D D, et al.On the use of gurney flaps for the aerodynamic performance augmentation of Darrieus wind turbines[J]. Energy conversion and management, 2019, 184: 402-415.
[12] ZHU H T, HAO W X, LI C, et al.Effect of geometric parameters of gurney flap on performance enhancement of straight-bladed vertical axis wind turbine[J]. Renewable energy, 2021, 165: 464-480.
[13] 李岩, 赵守阳, 曲春明, 等. 具有叶片尾缘弯板结构垂直轴风力机气动特性研究[J]. 太阳能学报, 2020, 41(9): 338-346.
LI Y, ZHAO S Y, QU C M, et al.Aerodynamics study on vertical axis wind turbine with curved plate adding at blade trailing edge[J]. Acta energiae solaris sinica, 2020, 41(9): 338-346.
[14] MAHDI Z, ALI S, MOHAMMAD J M.Numerical study of porous media effect on the blade surface of vertical axis wind turbine for enhancement of aerodynamic performance[J]. Energy conversion and management, 2021, 245: 114598.
[15] MOHAMED M H.Performance investigation of H-rotor Darrieus turbine with new airfoil shapes[J]. Energy, 2012, 47(1): 522-530.
[16] CASTELLI M R, ARDIZZDN G, BATTISTI L B, et al. Modeling strategy and numerical validation for a Darrieus vertical axis micro-wind turbine[C]//2010 ASME International Mechanical Engineering Congress & Exposition, American Society of Mechanical Engineers, 2010: Vancouver, British Columbia, Canada, 7254-7263.
[17] 朱海天, 李春, 郝文星, 等. 襟翼翼缝结构改进设计控制流动分离的数值研究[J]. 热能动力工程, 2018, 33(9): 128-133, 100.
ZHU H T, LI C, HAO W X, et al.Numerical investigation on flap gap configuration modification to control flow separation[J]. Journal of engineering for thermal energy and power, 2018, 33(9): 128-133, 100.
[18] 朱海天, 郝文星, 李春, 等. 叶片实度对建筑增强型垂直轴风力机气动性能的影响[J]. 热能动力工程, 2018, 33(7): 114-121.
ZHU H T, HAO W X, LI C, et al.Impact of solidity on aerodynamic performance of building augmented vertical axis wind turbine[J]. Journal of engineering for thermal energy and power, 2018, 33(7): 114-121.
[19] 邱静, 王国志, 李玉辉. 基于STAR-CCM+的简单流体模型CFD研究[J]. 液压气动与密封, 2010, 30(10): 8-10.
QIU J, WANG G Z, LI Y H.A simple fluid model for CFD research based on STAR-CCM+[J]. Hydraulics pneumatics & seals, 2010, 30(10): 8-10.
[20] TSENG C C, YE C.Numerical investigations of the vortex interactions for a flow over a pitching foil at different stages[J]. Journal of fluids and structures, 2015, 58: 291-318.
[21] GHARALI K, JOJNSON D A.Numerical modeling of an S809 airfoil under dynamic stall, erosion and high reduced frequencies[J]. Applied energy, 2012, 93: 45-52.
[22] 程谦. 螺旋式垂直轴风力机数值计算研究[D]. 上海: 上海交通大学, 2017.
CHENG Q.Numerical simulation of helical vertical axis wind turbine[D]. Shanghai: Shanghai Jiao Tong University, 2017.

基金

国家自然科学基金(51976131; 51676131); 国际(地区)合作与交流项目(51811530315); 上海“科技创新行动计划”地方院校能力建设项目(19060502200)

PDF(2513 KB)

Accesses

Citation

Detail

段落导航
相关文章

/