量子尺度下Ag纳米颗粒吸收散射特性建模及分析

于晓晨, 李佳玉, 杨振宇

太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 239-245.

PDF(2088 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2088 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 239-245. DOI: 10.19912/j.0254-0096.tynxb.2022-0003

量子尺度下Ag纳米颗粒吸收散射特性建模及分析

  • 于晓晨, 李佳玉, 杨振宇
作者信息 +

MODELING AND ANALYSIS OF ABSORPTION AND SCATTERING PROPERTIES OF Ag NANOPARTICLES IN QUANTUM SCALE

  • Yu Xiaochen, Li Jiayu, Yang Zhenyu
Author information +
文章历史 +

摘要

以量子尺度下球形和棒形Ag纳米颗粒为研究对象,通过数值模拟的方法对其吸收散射特性进行建模分析。结果表明:修正模型的计算结果相对于经典模型而言,吸收峰的位置发生明显移动,且峰值明显减小。棒形结构Ag纳米颗粒的吸收峰可有效优化至可见光波段,且有较高的吸收因子值。

Abstract

In this paper, the research objects are the spherical and rod-shaped Ag nanoparticles at quantum scale. Their absorption and scattering properties are modelled and analyzed by numerical simulation. The results show that, compared with the calculated results of classical model, the absorption peak positions of the modified electromagnetic model have moved significantly, and the values of the peaks have been significantly reduced. The absorption peak of the rod-shaped Ag nanoparticles can be effectively optimized to the visible light band and a higher absorption factor value.

关键词

电磁理论 / 纳米颗粒 / 等离激元光子学 / 吸收效率 / 电磁修正模型 / 吸收光谱

Key words

electromagnetic theory / nanoparticles / plasmonics / absorption efficiency / modified electromagnetic model / absorption spectroscopy

引用本文

导出引用
于晓晨, 李佳玉, 杨振宇. 量子尺度下Ag纳米颗粒吸收散射特性建模及分析[J]. 太阳能学报. 2023, 44(5): 239-245 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0003
Yu Xiaochen, Li Jiayu, Yang Zhenyu. MODELING AND ANALYSIS OF ABSORPTION AND SCATTERING PROPERTIES OF Ag NANOPARTICLES IN QUANTUM SCALE[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 239-245 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0003
中图分类号: O441.4   

参考文献

[1] SUN M T, XU H X.A novel application of plasmonics: plasmon-driven surface-catalyzed reactions[J]. Small, 2012, 8(18): 2777-2786.
[2] MAYER K M, HAFNER J H.Localized surface plasmon resonance sensors[J]. Chemical reviews, 2011, 111(6): 3828-3857.
[3] HIRSCH L R, STAFFORD R J, BANKSON J A, et al.Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(23): 13549-13554.
[4] CAI B Y, JIA B H, SHI Z R, et al.Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells[J]. Applied physics letters, 2013, 102(9): 093107.
[5] LU L Y, LUO Z Q, XU T, et al.Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells[J]. Nano letters, 2013, 13(1): 59-64.
[6] DING S Y, YI J, LI J F, et al.Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature reviews materials, 2016, 1(6): 1-16.
[7] 邵磊山, 李静静, 陈仕兵, 等. 石墨烯/纳米银抗菌剂在聚丙烯中的应用[J]. 高分子材料科学与工程, 2020, 36(11): 134-138.
SHAO L S, LI J J, CHEN S B, et al.Application of graphene/silver nanoparticle as antibacterial agent to polypropylene[J]. Polymer materials science & engineering, 2020, 36(11): 134-138.
[8] PILLAI S, CATCHPOLE K R, TRUPKE T, et al.Surface plasmon enhanced silicon solar cells[J]. Journal of applied physics, 2007, 101(9): 093105.
[9] 张宇杰, 杨仕娥, 陈永生, 等. 金属纳米颗粒光散射特性研究[J]. 太阳能学报, 2017, 38(3): 721-725.
ZHANG Y J, YANG S E, CHEN Y S, et al.The study of the metal nanoparticle light scattering[J]. Acta energiae solaris sinica, 2017, 38(3): 721-725.
[10] 牟登科, 周欢森, 钟建军, 等. 彩色纳米银抗菌剂的制备及抗菌性能研究[J]. 化工新型材料, 2020, 48(7): 93-95, 99.
MOU D K, ZHOU H S, ZHONG J J, et al.Preparation and property of colorful nano-silver antibacterial agent[J]. New chemical materials, 2020, 48(7): 93-95, 99.
[11] 袁洋, 顾佳俊. 金属纳米颗粒的表面等离子体共振及其调控[J]. 冶金与材料, 2020, 40(5): 92-93, 95.
YUAN Y, GU J J.Surface plasmon resonance of metal nanoparticles and its control[J]. Metallurgy and materials, 2020, 40(5): 92-93, 95.
[12] 洪文鹏, 兰景瑞, 李浩然, 等. 基于时域有限差分法的核壳双金属纳米颗粒光吸收率反转行为[J]. 物理学报, 2021, 70(20): 327-340.
HONG W P, LAN J R, LI H R, et al.Reversal behavior of optical absorption rate of bimetallic core-shell nanoparticles based on finite-difference time-domain method[J]. Acta physica sinica, 2021, 70(20): 327-340.
[13] MCMAHON J M, GRAY S K, SCHATZ G C.Nonlocal optical response of metal nanostructures with arbitrary shape[J]. Physical review letters, 2009, 103(9): 097403.
[14] GONALVES P A D, CHRISTENSEN T, RIVERA N, et al. Plasmon-emitter interactions at the nanoscale[J]. Nature communications, 2020, 11(1): 366.
[15] YI Y, DI Z, WEI Y, et al.A general theoretical and experimental framework for nanoscale electromagnetism[J]. Nature, 2019, 576(7786): 248-252.
[16] FEIBELMAN P J.Surface electromagnetic fields[J]. Progress in surface science, 1982, 12(4): 287-407.
[17] CHRISTENSEN T, YAN W, JAUHO A P, et al.Quantum corrections in nanoplasmonics: shape, scale, and material[J]. Physical review letters, 2017, 118(15): 157402.
[18] JOHNSON P B, CHRISTY R W.Optical constants of the noble metals[J]. Physical review B, 1972, 6(12): 4370-4379.
[19] SCHOLL J A, KOH A L, DIONNE J A.Quantum plasmon resonances of individual metallic nanoparticles[J]. Nature, 2012, 483(7390): 421-427.

基金

国家自然科学基金(51476078; 52076109)

PDF(2088 KB)

Accesses

Citation

Detail

段落导航
相关文章

/