寒冷地区户用大平板太阳能集热器-空气源热泵系统性能研究

李金平, 李彩军, 李天澍, 董玉慧, 代静波, Vojislav Novakovic

太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 246-256.

PDF(3078 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3078 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 246-256. DOI: 10.19912/j.0254-0096.tynxb.2022-0004

寒冷地区户用大平板太阳能集热器-空气源热泵系统性能研究

  • 李金平1~3, 李彩军1~3, 李天澍1~3, 董玉慧1~3, 代静波1~3, Vojislav Novakovic4
作者信息 +

STUDY ON PERFORMANCE OF HOUSEHOLD LARGE FLAT PLATE SOLAR COLLECTOR-AIR SOURCE HEAT PUMP SYSTEM IN COLD AREA

  • Li Jinping1-3, Li Caijun1-3, Li Tianshu1-3, Dong Yuhui1-3, Dai Jingbo1-3, Vojislav Novakovic4
Author information +
文章历史 +

摘要

针对太阳能难以单独稳定供暖和空气源热泵供暖成本高的问题,提出空气源热泵辅助太阳能稳定供暖构想,在甘肃省兰州市七里河区魏岭乡绿化村研发搭建大平板太阳能集热器-空气源热泵系统,对比研究晴天、多云和阴天3种典型工况下大平板太阳能集热器的集热效率、太阳能热泵和空气源热泵COP、太阳能保证率、系统总供热量和系统能效比等性能参数。结果表明:晴天、多云和阴天系统集热效率分别为44.9%、38.7%和20.6%,3种工况下太阳能热泵COP均为4.0,空气源热泵COP分别为3.5、3.3和3.1,太阳能保证率分别为38.1%、32.3%和12.9%,系统全天供热量分别为142.52、135.22和120.96 kWh,系统能效比分别为3.5、3.4和2.7。研究结果证明大平板太阳能集热器-空气源热泵系统用于寒冷地区单体建筑供暖的可行性,可为寒冷地区农村单体建筑的供暖提供一种新途径。

Abstract

In view of the problem that solar energy is difficult to stabilize heating alone and the high cost of air source heat pump heating, the idea of air source heat pump assisted solar stable heating is proposed. A large flat plate solar collector-air source heat pump system is developed and bulit in Green Village, Weiling Town, Qilihe District, Lanzhou City, Gansu Province. The performance parameters of efficiency of large flat plate solar collector, COP of solar heat pump and air source heat pump, solar fraction, total heating capacity and system energy efficiency ratio are compared and studied under three typical working conditions of sunny, cloudy and overcast days. The results show that the efficiency of the system in sunny, cloudy and overcast days is 44.9%, 38.7% and 20.6% respectively. The COP of solar heat pump under three working conditions is 4.0, and that of air source heat pump is 3.5, 3.3 and 3.1 respectively. The solar fraction is 38.1%, 32.3% and 12.9% respectively. The whole day heating capacity of the system is 142.52, 135.22 and 120.96 kWh respectively. The system energy efficiency ratio is 3.5, 3.4 and 2.7 respectively. The research results prove the feasibility of large flat plate solar collector-air source heat pump system and provide a new way for rural single building heating in cold area.

关键词

太阳能集热器 / 空气源热泵 / 性能系数 / 太阳能保证率 / 系统能效比

Key words

solar collector / air source heat pumps / coefficient of performance / solar fraction / system energy efficiency ratio

引用本文

导出引用
李金平, 李彩军, 李天澍, 董玉慧, 代静波, Vojislav Novakovic. 寒冷地区户用大平板太阳能集热器-空气源热泵系统性能研究[J]. 太阳能学报. 2023, 44(5): 246-256 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0004
Li Jinping, Li Caijun, Li Tianshu, Dong Yuhui, Dai Jingbo, Vojislav Novakovic. STUDY ON PERFORMANCE OF HOUSEHOLD LARGE FLAT PLATE SOLAR COLLECTOR-AIR SOURCE HEAT PUMP SYSTEM IN COLD AREA[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 246-256 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0004
中图分类号: TK519   

参考文献

[1] SIGRID K B.Urban renewable energy on the upswing: a spotlight on renewable energy in cities in REN21’s “Renewables 2019 Global Status Report”[J]. Resources, 2019, 8(3): 139.
[2] 龙惟定, 梁浩. 我国城市建筑碳达峰与碳中和路径探讨[J]. 暖通空调, 2021, 51(4): 1-17.
LONG W D, LIANG H.Discussion on paths of carbon peak and carbon neutrality of urban buildings in China[J]. Heating ventilating & air conditioning, 2021, 51(4): 1-17.
[3] ZHAO L Y, JIA H N.Study on the energy-saving reconstruction method of the outer architecture envelope of urban public architecture[J]. International journal of global energy issues, 2020, 42(5-6): 443-456.
[4] 赵东, 罗勇, 高歌, 等. 我国近50年来太阳直接辐射资源基本特征及其变化[J]. 太阳能学报, 2009, 30(7): 946-952.
ZHAO D, LUO Y, GAO G, et al.Essential characteristics of solar direct radiation over recent 50 years in China[J]. Acta energiae solaris sinica, 2009, 30(7): 946-952.
[5] KIM T, CHOI B I, HAN Y S, et al.A comparative investigation of solar-assisted heat pumps with solar thermal collectors for a hot water supply system[J]. Energy conversion and management, 2018, 172: 472-484.
[6] 周淑慧, 孙慧, 王晨龙, 等. 政策驱动下的中国北方农村地区清洁取暖方式[J]. 天然气工业, 2020, 40(3): 146-156.
ZHOU S H, SUN H, WANG C L, et al.Policy-driven clean heating modes in the rural areas of the northern China[J]. Natural gas industry, 2020, 40(3): 146-156.
[7] 陈学锋, 何钦波, 徐言生, 等. 热泵辅助型太阳能热水系统动态性能评价研究[J]. 太阳能学报, 2015, 36(2): 478-483.
CHEN X F, HE Q B, XU Y S, et al.Dynamic performance evaluation of heat pump assisted domestic solar hot water system[J]. Acta energiae solaris sinica, 2015, 36(2): 478-483.
[8] CHATURVEDI S K, ABDEL-SALAM T M, SREEDHARAN S S, et al. Two-stage direct expansion solar-assisted heat pump for high temperature applications[J]. Applied thermal engineering, 2009, 29(10): 2093-2099.
[9] ODEH S, NIJMEH S, AKASH B.Performance evaluation of solar-assisted double-tube evaporator heat pump system[J]. International communications in heat and mass transfer, 2004, 31(2): 191-201.
[10] DANNEMAND M, SIFNAIOS I, TIAN Z Y, et al.Simulation and optimization of a hybrid unglazed solar photovoltaic-thermal collector and heat pump system with two storage tanks[J]. Energy conversion and management, 2020, 206: 112429.
[11] 宋孝春, 张亚立, 劳逸民, 等. 北京奥运村再生水热泵冷热源系统设计[J]. 暖通空调, 2017, 47(1): 74-79, 54.
SONG X C, ZHANG Y L, LAO Y M, et al.Design of reuse water-source heat pump cold and heat source system for Beijing Olympic Village[J]. Heating ventilating & air conditioning, 2017, 47(1): 74-79, 54.
[12] 黄俊鹏, 陈讲运, 徐尤锦. 平板太阳能集热器技术发展趋势[J]. 建筑科技, 2017(4): 40-47.
HUANG J P, CHEN J Y, XU Y J.Development trend of flat plate solar collector technology[J]. Construction science and technology, 2017(4): 40-47.
[13] WANG D J, MO Z L, LIU Y F, et al.Thermal performance analysis of large-scale flat plate solar collectors and regional applicability in China[J]. Energy, 2022, 238: 121931.
[14] 赵斌, 卢大为, 刘维安, 等. 高寒高海拔地区太阳能集中供暖技术及其应用[J]. 华电技术, 2020, 42(11): 51-55.
ZHAO B, LU D W, LIU W A, et al.Technology and application of solar central heating in extremely cold and high-altitude areas[J]. Huadian technology, 2020, 42(11): 51-55.
[15] 姚盼. 太阳能热水系统优化及适宜性研究[D]. 成都: 西南交通大学, 2016.
YAO P.Solar water heating system optimization and suitability study[D]. Chengdu: Southwest Jiaotong University, 2016.
[16] GB/T6424—2007, 平板型太阳能集热器[S].
GB/T6424—2007, Flat plate solar collectors[S].
[17] GB/T 19409—2013, 水(地)源热泵机组[S].
GB/T 19409—2013, Water source (ground source) heat pumps[S].
[18] 郑瑞澄, 路宾, 李忠, 等. 太阳能供热采暖工程应用技术手册[M]. 北京: 中国建筑工业出版社, 2012: 35-37.
ZHENG R C, LU B, LI Z, et al.Technical manual for application of solar heating engineering[M]. Beijing: China Architecture & Building Press, 2012: 35-37.
[19] 吴兴应. 太阳能光电-热一体化与热泵耦合系统的实验研究[D]. 长沙: 湖南大学, 2015.
WU X Y.Expermental study of the sloar photovoltaic-thermal hybrid and heat pump coupled systems[D]. Changsha: Hunan University, 2015.
[20] 孙先鹏. 太阳能联合空气源热泵的温室调温系统性能研究[D]. 咸阳: 西北农林科技大学, 2015.
SUN X P.Performance of greenhouse temperature regulation system using solar energy and air-source heat pump[D]. Xianyang: Northwest A&F University, 2015.
[21] 冯荣. 多因素耦合对户用热电气联供系统的影响机理 [D]. 兰州: 兰州理工大学, 2016.
FENG R.Mult-factors coupling influence mechanism on the household combined system of heat, power and biogas[D]. Lanzhou: Lanzhou University of Technology, 2016.

基金

国家重点研发计划(2019YFE0104900); 甘肃省高等学校产业支撑项目(2021CYZC-33); 兰州市人才创新创业项目(2017-RC-34; 2020-RC-126)

PDF(3078 KB)

Accesses

Citation

Detail

段落导航
相关文章

/