针对太阳能等低温热源的被动传输与建筑利用问题,提出一种基于平板热管阵列的热激活主动保温墙体,测试热管倾角与热源温度对其能量传输性能影响,对比热激活主动保温墙体与普通节能墙体热工性能差异。结果表明:蒸发段施加低温模拟热源后,热管实测有效导热系数为4400~35400 W/(m·℃);主动保温情景下可降低热管倾角以提升有效导热系数,辅助功能情景下可提升倾角以达类似目的;低温热源注入可显著提升墙体热工性能,热源温度为25、35 ℃时,墙体实测U值由基准值0.50 W/(m2·℃)分别降至0.19和-0.08W/(m2·℃)。
Abstract
Aiming at the passive transmission and innovative utilization of low-grade heat sources such as solar thermal energy, a novel thermo-activated active insulation wall based on the flat-plate heat pipe array (FPHP) is proposed. The effects of inclination and heat source temperature on the energy transmission performance of FPHP are tested, and the thermal performance of the thermos-activated active insulation wall and ordinary energy-saving wall are compared. The results show that the measured effective thermal conductivity of the FPHP ranges from 4400 to 35400 W/(m·℃) after the low-temperature simulated heat source is applied to the evaporation section. Therefore, the FPHP inclination can be reduced to improve the effective thermal conductivity when it is applied to the active insulation scenario, while the FPHP inclination can be increased when it is applied to the auxiliary energy supply or direct energy supply scenario to achieve similar purposes. Besides, the injection of low-temperature heat sources such as solar thermal energy can significantly improve the thermal performance of the thermo-activated active insulation wall. When the injected heat source temperature is 25 ℃ and 35 ℃, the measured U value can be reduced from 0.50 W/(m2·℃) to 0.19 and -0.08 W/(m2·℃), respectively.
关键词
太阳能 /
建筑节能 /
热管 /
主动保温 /
实验
Key words
solar energy /
building energy saving /
heat pipes /
active insulation /
experiments
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 余才锐, 沈冬梅, 何伟, 等. 基于辐射制冷和微槽道热管的相变墙体实验研究[J]. 太阳能学报, 2020, 41(4): 123-128.
YU C R, SHEN D M, HE W, et al.Experimental research on phase change wall based on sky radiative cooling and micro-channel heat pipe[J]. Acta energiae solaris sinica, 2020, 41(4): 123-128.
[2] 胡中停, 余鹏坤, 陈明想, 等. 基于微通道板强化换热的多功能百叶集热墙模块实验研究[J]. 太阳能学报, 2022, 43(2): 246-249.
HU Z T, YU P K, CHEN M X, et al.Experiment analysis of multi-functional trombe wall modul based on enhanced heat transfer micro-channel plate[J]. Acta energiae solaris sinica, 2022, 43(2):246-249.
[3] YANG Y, CHEN S R L, CHANG T X, et al. Uncertainty and global sensitivity analysis on thermal performances of pipe-embedded building envelope in the heating season[J]. Energy conversion and management, 2021, 244: 114509.
[4] 李先庭, 沈翀, 王宝龙, 等. 降低空调系统能耗的显热负荷分级构想[J]. 建筑技术开发, 2016, 43(10): 16-20.
LI X T, SHEN C, WANG B L, et al.Conception of sensible load grading to reduce energy consumption of air-conditioning system[J]. Building technology development, 2016, 43(10): 16-20.
[5] 朱丽, 杨洋, 陈萨如拉, 等. 热激活相变复合墙体动态热特性与节能潜力[J]. 重庆大学学报, 2018, 41(11): 42-52.
ZHU L, YANG Y, CHEN S R L, et al. Thermal performance and energy saving potential study on a thermo-activated PCM building system[J]. Journal of Chongqing University, 2018, 41(11): 42-52.
[6] KRZACZEK M, FLORCZUK J, TEJCHMAN J, et al.Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings[J]. Applied energy, 2019, 254: 113711.
[7] 朱丽, 杨洋. 被动式热激活复合墙体热特性实验研究[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(10): 1028-1035.
ZHU L, YANG Y.Experimental study of the thermal characteristics of a passive thermo-activated composite wall[J]. Journal of Tianjin University(science and technology), 2020, 53(10): 1028-1035.
[8] YAN T, XU X H, GAO J J, et al.Performance evaluation of a PCM-embedded wall integrated with a nocturnal sky radiator[J]. Energy, 2020, 210: 118412.
[9] SIMKO M, KRAJCIK M, SIKULA O, et al.Insulation panels for active control of heat transfer in walls operated as space heating or as a thermal barrier: numerical simulations and experiments[J]. Energy and buildings, 2018, 158: 135-146.
[10] KLINE S J, MCCLINTOCK F A.Describing uncertainties in single-sample experiments[J]. Mechanical engineering, 1953, 75: 3-8.
基金
安徽省自然科学基金青年基金(2108085QE241); 国家重点研发计划(2021YFE0200100); 中央高校基本科研业务经费(PA2021KCPY0038)