Li2CO3/Na2CO3/K2CO3及其混合熔融盐储热材料热物性分子动力学研究

杨薛明, 陶嘉伟, 孟凡星, 李春博

太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 48-58.

PDF(1823 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1823 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 48-58. DOI: 10.19912/j.0254-0096.tynxb.2022-0019

Li2CO3/Na2CO3/K2CO3及其混合熔融盐储热材料热物性分子动力学研究

  • 杨薛明, 陶嘉伟, 孟凡星, 李春博
作者信息 +

MOLECULAR DYNAMICS STUDY ON THERMOPHYSICAL PROPERTIES OF Li2CO3/Na2CO3/K2CO3 AND THEIR MIXED MOLTEN SALT FOR HEAT STORAGE

  • Yang Xueming, Tao Jiawei, Meng Fanxing, Li Chunbo
Author information +
文章历史 +

摘要

对Li2CO3/Na2CO3/K2CO3及其二元和三元混合熔融盐的密度、比热容、黏度、热导率进行分子动力学模拟(MD),对比得出模拟结果与现有的实验数据和模拟值相近。结果表明:随着温度的升高,密度逐渐减小,离子之间的距离增加,导致对剪切应力的抵抗力变小,这说明单组分、二元和三元熔融盐黏度的负温度依赖性。对于熔融盐的热导率,单组分和二元熔融盐也呈现出负温度依赖性,而三元熔融盐趋势是随温度的升高呈上升状态。

Abstract

Molecular dynamics (MD) simulations of density, specific heat capacity, viscosity and thermal conductivity of Li2CO3/Na2CO3/K2CO3 and its binary and ternary mixed molten salts were carried out and compared with the experimental results. The simulation results are in good agreement with the existing experimental data and simulation values. The results show that with the increasing of temperature, the density decreases and the distance between ions increases, which lead to the decrease of resistance to shear stress, indicating the negative temperature dependence of viscosity of the single-component, binary and ternary molten salts. For the thermal conductivity of molten salt, the single-component and the binary molten salt also show a negative temperature dependence, while the ternary molten salt tends to increase with the increase of temperature.

关键词

太阳能热发电 / 碳酸盐 / 分子动力学 / 熔融盐 / 比热 / 黏度 / 热导率

Key words

solar thermal power generation / carbonate / molecular dynamics / molten salt / specific heat / viscosity / thermal conductivity

引用本文

导出引用
杨薛明, 陶嘉伟, 孟凡星, 李春博. Li2CO3/Na2CO3/K2CO3及其混合熔融盐储热材料热物性分子动力学研究[J]. 太阳能学报. 2023, 44(5): 48-58 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0019
Yang Xueming, Tao Jiawei, Meng Fanxing, Li Chunbo. MOLECULAR DYNAMICS STUDY ON THERMOPHYSICAL PROPERTIES OF Li2CO3/Na2CO3/K2CO3 AND THEIR MIXED MOLTEN SALT FOR HEAT STORAGE[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 48-58 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0019
中图分类号: TK512.+4   

参考文献

[1] NI H O, WU J, SUN Z.Molecular simulation of the structure and physical properties of alkali nitrate salts for thermal energy storage[J]. Renewable energy, 2019, 136: 955-967.
[2] HICKIN C, LI H, KEMP S.An analysis of the effect of molten salt thermal storage on parabolic trough concentrated solar power plant efficiency[J]. PAM review energy science & technology, 2015, 2: 3-13.
[3] AKBARI H, BROWNE M C, ORTEGA A, et al.Efficient energy storage technologies for photovoltaic systems[J]. Solar energy, 2019, 192: 144-168.
[4] LIU D, FENG L X, BO L, et al.Progress in thermochemical energy storage for concentrated solar power: a review[J]. International journal of energy research, 2018, 42(15): 4546-4561.
[5] PRAMOD K M, RAO P V C, CHOUDARY N V, et al. Novel methodology to prepare homogenous ternary molten salts for concentrated solar power applications and their thermo-physical characterization[J]. Applied thermal engineering, 2016, 109: 906-910.
[6] VILLADA C, BONK A, BQUBER T, et al.High-temperature stability of nitrate/nitrite molten salt mixtures under different atmospheres[J]. Applied energy, 2018, 226: 107-115.
[7] PEREIRA D C J, EAMES P. Thermal energy storage for low and medium temperature applications using phase change materials-a review[J]. Applied energy, 2016, 177: 227-238.
[8] 邹露璐, 吴玉庭, 马重芳. 低熔点四元混合硝酸盐的开发与实验研究[J]. 太阳能学报, 2020, 41(5): 27-32.
ZOU L L, WU T T, MA C F.Experimental study of low melting point mixed nitrates[J]. Acta energies solaris sinica, 2020, 41(5): 27-32.
[9] 张璐迪, 吴玉庭, 任楠, 等. 纳米粒子的分散对提高LMPS盐比热容的影响[J]. 太阳能学报, 2017, 38(11): 3018-3021.
ZHANG L D, WU Y T, REN N, et al.Effects of nanoparticle dispersion on enhancing specific heat capacity of lmps salt[J]. Acta energies solaris sinica, 2017, 38(11): 3018-3021.
[10] 张晓盼, 鹿院卫, 于强, 等. 微波法对纳米四元混合硝酸盐热物性影响研究[J]. 太阳能学报, 2021, 42(10): 153-159.
ZHANG X P, LU Y W, YU Q, et al.Effect of microwave on thermal properties of nano-tetrad mixed nitrate[J]. Acta energies solaris sinica, 2021, 42(10): 153-159.
[11] YANG X M, XU J X, WU S H, et al.The effect of structural asymmetry on thermal rectification in nanostructures[J]. Journal of physics: condensed matter, 2018, 30(43): 435305.
[12] YANG X M, ZHANG M L, GAO Y, et al.Molecular dynamics study on viscosities of sub/supercritical n-decane, n-undecane and n-dodecane[J]. Journal of molecular liquids, 2021, 335: 116180.
[13] YANG X M, GAO Y, ZHANG M L, et al.Comparison of atomic simulation methods for computing thermal conductivity of n-decane at sub/supercritical pressure[J]. Journal of molecular liquids, 2021, 342: 117478.
[14] SANGSTER M D A M. A comparison of the structure and some dynamical properties of molten rubidium halides[J]. Physics C solid state physics, 1976, 9: 3381-3390.
[15] SANGSTER M J L, DIXON M. Molten rubidium chloride a molecular dynamics study[J]. Philosophical magazin, 1977, 35(4): 1049-1061.
[16] DIXON M, SANGSTER M J L. Computer simulation study of the structural properties of molten caesium halides[J]. Phys C solid state phys, 1977, 10: 3015-3022.
[17] GALAMBA N, NIETO D C C A, ELY J F. Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides[J]. The journal of chemical physiss, 2007, 126(20): 204511.
[18] GALAMBA N, NIETO D C C A, ELY J F. Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations[J]. The journal of chemical physics, 2004,120(18): 8676-8682.
[19] GALAMBA N, NIETO DE CASTRO C A, ELY J F. Molecular dynamics simulation of the shear viscosity of molten alkali halides[J]. The journal of physical chemistry B, 2004, 108(11): 3658-3662.
[20] GALAMBA N, NIETO DE CASTRO C A, ELY J F. Shear viscosity of molten alkali halides from equilibrium and nonequilibrium molecular-dynamics simulations[J]. The journal of chemical physics, 2005, 122(22): 224501.
[21] PAN G C, DING J, WANG W L, et al.Molecular simulations of the thermal and transport properties of alkali chloride salts for high-temperature thermal energy storage[J]. International journal of heat and mass transfer, 2016, 103: 417-427.
[22] DING J, PAN G C, DU L C, et al.Theoretical prediction of the local structures and transport properties of binary alkali chloride salts for concentrating solar power[J]. Nano energy, 2017, 39: 380-389.
[23] DING J, DU L C, PAN G C, et al.Molecular dynamics simulations of the local structures and thermodynamic properties on molten alkali carbonate K2CO3[J]. Applied energy, 2018, 220: 536-544.
[24] DU L C, XIE W J, DING J, et al.Molecular dynamics simulations of the thermodynamic properties and local structures on molten alkali carbonate Na2CO3[J]. International journal of heat and mass transfer, 2019, 131: 41-51.
[25] DU L C, DING J, WANG W L, et al.Molecular dynamics simulations on the binary eutectic system Na2CO3-K2CO3[J]. Energy procedia, 2017, 142: 3553-3559.
[26] DING J, PAN G C, DU L C, et al.Molecular dynamics simulations of the local structures and transport properties of Na2CO3 and K2CO3[J]. Applied energy, 2018, 227: 555-563.
[27] JO B, BANERJEE D.Thermal properties measurement of binary carbonate salt mixtures for concentrating solar power plants[J]. Journal of renewable and sustainable energy, 2015, 7(3): 33121.
[28] AN X H, CHENG J H, ZHANG P, et al.Determination and evaluation of the thermophysical properties of alkali carbonate eutectic molten salt[J]. Faraday discussIons, 2016, 190: 327-338.
[29] JANSSEN G J M, TISSEN J T W M. Pair potentials from ab initio calculations for use in md simulations of molten alkali carbonates[J]. Molecular simulation, 1990, 5: 83-98.
[30] PLIMPTON S, Fast parallel algorithms for short-range molecular dynamics[J]. Journal of computational physics, 1995, 117(1): 1-19.
[31] DUAN Z H, KRASNY R.A treecode algorithm for computing ewald summation of dipolar systems[J]. Applied computing, 2003: 172-177.
[32] YANG X M, FENG Y Y, XU J J, et al.Numerical study on transport properties of the working mixtures for coal supercritical water gasification based power generation systems[J]. Applied thermal engineering, 2019, 162: 114228.
[33] YANG H A, CAO B Y.Effects and correction of angular momentum non-conservation in RNEMD for calculating thermal conductivity[J]. Computational materials science, 2020, 183: 109753.
[34] OTSUBO S, NAGASAKA Y, NAGASHIMA A.Experimental study on the forced rayleigh scattering method using CO2 laser (3rd report, measurement of molten single carbonates and their binary and ternary mixtures)[J]. Transactions of the Japan Society of Mechanical Engineers series B, 1998: 806-813.
[35] JANZ G J, LORENZ M R.Molten carbonate electrolytes: physical properties, structure, and mechanism of electrical conductance[J]. Journal of the Electrochemical Society, 1961, 108(11): 1052-1058.
[36] AN X H, CHENG J H, SU T, et al.Determination of thermal physical properties of alkali fluoride/carbonate eutectic molten salt[C]//Solarpaces 2016: International Conference on Concentrating Solar Power And Chemical Energy Systems, Abu Dhabi, United Arab Emirates, 2016.
[37] JANZ G J, NEUENSCHWANDER E, KELLY F J.High-temperature heat content and related properties for Li2CO3, Na2CO3, K2CO3, and the ternary eutectic mixture[J]. Transactions of the Faraday Society, 1963, 59: 841-845.
[38] ZHANG Z L, YUAN Y P, ZHANG N, et al.Thermal properties enforcement of carbonate ternary via Lithium fluoride: a heat transfer fluid for concentrating solar power systems[J]. Renewable energy, 2017, 111: 523-531.
[39] SATO Y, YAEGASHI S, KIJIMA T, et al.Viscosities of molten alkali carbonates[J]. Netsu Bussei, 1999, 13: 156-161.
[40] JANZ G J.Molten salts handbook[M]. New York: Academic Press,1967.
[41] EJIMA T, YUZURU S, YAMAMURA T, et al.Viscosity of the eutectic Li2CO3-Na2CO3-K2CO3 melt[J]. Journal of chemical and engineering data, 1987, 32(2): 180-182.
[42] TASIDOU K Α, MAGNUSSON J, MUNRO T, et al.Reference correlations for the viscosity of molten, LiF-NaF-KF, LiF-BeF2 and Li2CO3-Na2CO3-K2CO3[J]. Journal of physical and chemical reference data, 2019, 48(4): 43102.
[43] GHERIBI A E, TORRES J A, CHARTRAND P.Recommended values for the thermal conductivity of molten salts between the melting and boiling points[J]. Solar energy materials and solar cells, 2014, 126: 11-25.
[44] WANG J, SUN Z, LU G M, et al.Molecular dynamics simulations of the local structures and transport coefficients of molten alkali chlorides[J]. The journal of physical chemistry B, 2014, 118(34): 10196-10206.

基金

国家自然科学基金(52076080); 河北省自然科学基金(E2019502138)

PDF(1823 KB)

Accesses

Citation

Detail

段落导航
相关文章

/