基于变系数滑模控制器的风电机组振动主动控制研究

张世界, 魏静, 汤宝平, 吉科峰

太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 407-415.

PDF(3119 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3119 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 407-415. DOI: 10.19912/j.0254-0096.tynxb.2022-0022

基于变系数滑模控制器的风电机组振动主动控制研究

  • 张世界1, 魏静1,2, 汤宝平1,2, 吉科峰3
作者信息 +

RESEARCH ON VIBRATION CONTROL OF WIND TURBINES BASED ON VARIABLE COEFFICIENT SLIDING MODE CONTROLLER

  • Zhang Shijie1, Wei Jing1,2, Tang Baoping1,2, Ji Kefeng3
Author information +
文章历史 +

摘要

基于某公司新型8 MW半直驱式风电机组传动链实际参数建立传动链机电控耦合模型,设计机侧变流器速度环变系数滑模控制器,通过采用改变控制策略来增强风电传动链抗干扰能力并减小传动链零部件横向振动。结果表明:当风电机组受到外部突变激励时,在变系数滑模控制器控制下发电机转子对速度追踪效果更好、机械部件横向振动位移显著减小且发电机电流及电磁转矩中的机械频率得到有效抑制。

Abstract

Based on the actual parameters of the drivetrain of a new 8 MW semi-direct-drive wind turbine, the electromechanical model of the drivetrain is established, by changing the control strategy, the anti-interference ability of the wind turbine drivetrain is enhanced and the transverse vibration of the components of the drivetrain is reduced. The results show that when the wind turbine is excited by change, under the variable coefficient sliding mode controller, the speed tracking effect of the generator rotor is better, the transverse vibration displacement of the mechanical parts is reduced significantly, and the mechanical frequency of the generator current and the electromagnetic torque is effectively suppressed.

关键词

风电机组 / 动力学 / 传动链 / 滑模控制 / 机电耦合

Key words

wind turbines / dynamics / drivetrain / sliding mode control / electromechanical coupling

引用本文

导出引用
张世界, 魏静, 汤宝平, 吉科峰. 基于变系数滑模控制器的风电机组振动主动控制研究[J]. 太阳能学报. 2023, 44(5): 407-415 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0022
Zhang Shijie, Wei Jing, Tang Baoping, Ji Kefeng. RESEARCH ON VIBRATION CONTROL OF WIND TURBINES BASED ON VARIABLE COEFFICIENT SLIDING MODE CONTROLLER[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 407-415 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0022
中图分类号: TM315   

参考文献

[1] ZHANG S J, WEI J, CHEN X, et al.China in global wind power development: role, status and impact[J]. Renewable & sustainable energy reviews, 2020, 127: 109881.
[2] BP. BP statistical review of world energy[R]. 20200770, 2020.
[3] 孙黎, 褚景春, 袁凌, 等. 基于模态和传动误差的大型海上风力机传动链交互耦合式动力学分析[J]. 太阳能学报, 2021, 42(4): 366-373.
SUN L, ZHU J C, YUAN L, et al.Interaction coupling dynamic analysis of drive-train of large offshore wind turbine based on modal and transmission error[J]. Acta energiae solaris sinica, 2021, 42(4): 366-373.
[4] 谭建军, 朱才朝, 宋朝省, 等. 风电机组传动链刚柔耦合动态特性分析[J]. 太阳能学报, 2020, 41(7): 341-351.
TAN J J, ZHU C C, SONG C S, et al.Dynamic characteristics analysis of wind turbine drivetrain with rigid-flexible coupling[J]. Acta energiae solaris sinica, 2020, 41(7): 341-351.
[5] ZHANG A Q, WEI J, QIN D T, et al.Coupled dynamic characteristics of wind turbine gearbox driven by ring gear considering gravity[J]. Journal of dynamic systems, measurement and control, 2018, 140(9): 1-15.
[6] 张琛, 李征, 蔡旭, 等. 双馈风电机组轴系扭振的稳定与控制[J]. 电工技术学报, 2015, 30(10): 307-316.
ZHANG C, LI Z, CAI X, et al.Stability and control of shaft torsional oscillation for doubly-fed wind power generator[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 307-316.
[7] 解大, 冯俊淇, 娄宇成, 等. 基于三质量块模型的双馈风力机小信号建模和模态分析[J]. 中国电机工程学报, 2013, 33(S1): 21-29.
XIE D, FENG J Q, LOU Y C, et al.Small-signal modelling and modal analysis of DFIG-based wind turbine based on three-mass shaft model[J]. Proceedings of the CSEE, 2013, 33(S1): 21-29.
[8] DAVID F M, GARCIA J L D, PRADA M D. Modeling and control of type-2 wind turbines for sub-synchronous resonance damping[J]. Energy conversion & management, 2015, 97: 315-322.
[9] MOODI H, BUSTAN D.Wind turbine control using T-S systems with nonlinear consequent parts[J]. Energy, 2019, 172: 922-931.
[10] GIRSANG I P, DHUPIA J S, MULJADI E, et al.Modeling and control to mitigate resonant load in variable-speed wind turbine drivetrain[J]. IEEE journal of emerging and selected topics in power electronics, 2013, 1(4): 277-286.
[11] SALEM A, SIADA A A, ISLAM S.Application of order analysis to diagnose fatigue within wind turbine gearbox[J]. Technology and economics of smart grids and sustainable energy, 2017, 2(3): 1-5.
[12] 庞辉庆, 邓英, 刘茜, 等. 基于卡尔曼滤波的风电机组传动链扭振控制[J]. 太阳能学报, 2020, 41(11): 293-299.
PANG H Q, DENG Y, LIU Q, et al.Torsional vibration control of wind turbine drive train based on Kalman filter[J]. Acta energiae solaris sinica, 2020, 41(11): 293-299.
[13] 秦大同, 鲁迪, 陈锐博, 等. 随机风速下风电传动系统机电耦合动态特性分析[J]. 太阳能学报, 2020, 41(11): 326-333.
QIN D T, LU D, CHEN R B, et al.Electromechanical coupling dynamic characteristic analysis of wind turbine transmission system under random wind speed[J]. Acta energiae solaris sinica, 2020, 41(11): 326-333.
[14] GHOSH S, SENROY N.Electromechanical dynamics of controlled variable-speed wind turbines[J]. IEEE systems journal, 2015, 9: 639-646.
[15] YAN J H, FENG Y, DONG J N.Study on dynamic characteristic of wind turbine emulator based on PMSM[J]. Renewable energy, 2016, 97: 731-736.
[16] 黄守道. 直驱永磁风力发电机设计及并网控制[M]. 北京: 电子工业出版社, 2014.
HUANG S D.Design and grid-connected control of direct-driven permanent magnet wind turbine[M]. Beijing: Publishing House of Rlectronics Industry, 2014.
[17] 袁雷. 现代永磁同步电机控制原理及Matlab仿真[M]. 北京: 北京航空航天大学出版社, 2016.
YUAN L.Control principle and matlab simulation of PMSM [M]. Beijing: Beihang University Press, 2016.
[18] KOMURCUGIL H, BIRICIK S, BAYHAN S, et al.Sliding mode control: overview of its applications in power converters[J]. IEEE industrial electronics magazine, 2021, 15(1): 40-49.
[19] HOU L M, WANG L Y, WANG H Z.SMC for systems with matched and mismatched uncertainties and disturbances based on NDOB[J]. Acta automatica sinica, 2017, 43(7): 1257-1264.
[20] GB/T 14549—1993, 电能质量公用电网谐波[S].
GB/T 14549—1993, Power quality harmonics in public power grid[S].

基金

国家重点研发计划(2018YFB2001602); 中央高校基金项目(SKLMT-ZZKT-2021Z02)

PDF(3119 KB)

Accesses

Citation

Detail

段落导航
相关文章

/