基于IP&O-ICS算法的光伏系统MPPT控制研究

李昂, 刘文锋, 李音柯, 高春阳

太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 203-209.

PDF(2223 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2223 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 203-209. DOI: 10.19912/j.0254-0096.tynxb.2022-0044

基于IP&O-ICS算法的光伏系统MPPT控制研究

  • 李昂, 刘文锋, 李音柯, 高春阳
作者信息 +

RESEARCH ON MPPT CONTROL OF PHOTOVOLTAIC SYSTEM BASED ON IP&O-ICS ALGORITHM

  • Li Ang, Liu Wenfeng, Li Yinke, Gao Chunyang
Author information +
文章历史 +

摘要

传统的光伏系统MPPT算法易陷入局部最优,而基于智能优化算法的MPPT方法追踪速度慢,皆不能同时兼顾准确性和快速性。对此,该文设计一种变步长扰动观察法(IP&O)结合自适应布谷鸟搜索(ICS)算法的复合算法,先利用IP&O迅速到达对应电压最大的功率极大值点,再根据复杂光照环境下光伏阵列的输出特性,利用该点的功率值调整ICS算法的搜索范围,使其快速准确地追踪到最大功率点。通过仿真对比,验证了此算法在追踪速度和精度上的优越性。

Abstract

The traditional MPPT algorithm of photovoltaic system is easy to fall into the local optimum, and the MPPT method based on the intelligent optimization algorithm has a slow tracking speed, which cannot balance accuracy and speed at the same time. In this regard, this article designs a composite algorithm combining Improved Perturbation and Observation method (IP&O) and improved cuckoo search (ICS) algorithm. It first uses IP&O to quickly track to the power extreme point of the maximum corresponding voltage. Then, according to the output characteristics of the photovoltaic array in the complex lighting environment, the power value of this point is used to dynamically adjust the search range of the ICS algorithm, so that it can track the maximum power point quickly and accurately. Through simulation comparison, the superiority of this algorithm in tracking speed and accuracy is verified.

关键词

光伏阵列 / 光照条件 / 最大功率点跟踪 / 布谷鸟算法 / 变步长扰动观察法

Key words

photovoltaic arrays / illumination conditions / maximum power point trackers / cuckoo algorithm / improved perturbation and observation method

引用本文

导出引用
李昂, 刘文锋, 李音柯, 高春阳. 基于IP&O-ICS算法的光伏系统MPPT控制研究[J]. 太阳能学报. 2023, 44(5): 203-209 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0044
Li Ang, Liu Wenfeng, Li Yinke, Gao Chunyang. RESEARCH ON MPPT CONTROL OF PHOTOVOLTAIC SYSTEM BASED ON IP&O-ICS ALGORITHM[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 203-209 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0044
中图分类号: TM615   

参考文献

[1] 邱革非, 张春刚, 仲泽坤, 等. 基于扰动观察法和电导增量法的光伏发电系统MPPT算法研究综述[J]. 中国电力, 2017, 50(3): 154-160.
QIU G F, ZHANG C Q, ZHONG Z K, et al.MPPT analysis of photovoltaic power generation system based on P&O and IC method[J]. Electric power, 2017, 50(3): 154-160.
[2] 花赟昊, 朱武, 郭启明. 光伏发电系统MPPT算法研究综述[J]. 电源技术, 2020, 44(12): 1855-1858.
HUA Y H, ZHU W, GUO Q M.Review of MPPT algorithm of photovoltaic power generation system[J]. Chinese journal of power sources, 2020, 44(12): 1855-1858.
[3] KHAN M Y A, LIU H M,YUAN X L, et al. A novel high step-up DC-DC converter with improved P&O MPPT for photovoltaic applications[J]. Electric power components and systems, 2021, 49(9-10): 884-900.
[4] 荣德生, 刘凤. 改进型扰动观察法在光伏MPPT中的研究[J]. 电力系统及其自动化学报, 2017, 29(3):104-109.
RONG D S, LIU F.Application of improved perturbation and observation method to photovoltaic MPPT[J]. Proceedings of the CSU-EPSA, 2017, 29(3): 104-109.
[5] 陈景文, 张文倩, 李晓飞. 基于改进电导增量法的光伏MPPT控制[J]. 智慧电力, 2021, 49(9): 47-55.
CHEN J W, ZHANG W Q, LI X F.Photovoltaic MPPT control based on improved conductance increment method[J]. Smart power, 2021, 49(9): 47-55.
[6] 聂晓华, 赖家俊. 局部阴影下光伏阵列全局最大功率点跟踪控制方法综述[J]. 电网技术, 2014, 38(12): 3279-3285.
NIE X H, LAI J J.A survey on tracking and control approaches for global maximum power point of photovoltaic arrays in partially shaded environment[J]. Power system technology, 2014, 38(12): 3279-3285.
[7] 王硕禾, 郑俊观, 陈祖成, 等. 基于改进粒子群优化算法光伏阵列多峰值MPPT的研究[J]. 可再生能源, 2019, 37(6): 879-885.
WANG S H, ZHENG J G, CHEN Z C, et al.Study on multi-peak MPPT of photovoltaic array based on improved particle swarm optimization algorithm[J]. Renewable energy resources, 2019, 37(6): 879-885.
[8] 姜萍, 栾艳军, 张伟, 等. 局部遮阴下基于改进PSO的多峰值MPPT研究[J]. 太阳能学报, 2021, 42(8): 140-145.
JIANG P, LUAN Y J, ZHANG W, et al.Research of mult-peak MPPT under partial shaded conditions based on improved PSO algorithm[J]. Acta energiae solaris sinica, 2021, 42(8): 140-145.
[9] 雷茂杰, 许坦奇, 孟凡英. 基于自适应粒子群算法的MPPT控制策略[J]. 电源技术, 2021, 45(8):1036-1039.
LEI M J, XU T Q, MENG F Y.MPPT control strategy based on adaptive particle swarm optimization algorithm[J]. Chinese journal of power sources, 2021, 45(8): 1036-1039.
[10] 赵斌, 袁清, 王力, 等. 基于改进蚁狮算法的光伏多峰值MPPT控制[J]. 太阳能学报, 2021, 42(9): 132-139.
ZHAO B, YUAN Q, WANG L, et al.Multi-peak MPPT control of PV array based on improved ALO algorithm[J]. Acta energiae solaris sinica, 2021, 42(9): 132-139.
[11] 郭蓓. 基于果蝇优化算法的光伏系统MPPT控制方法研究[D]. 重庆: 重庆大学, 2019.
GUO B.Study on control method of MPPT of PV system based on fruit fly optimization algorithm[D]. Chongqing: Chongqing University, 2019.
[12] 赵阳. 基于粒子群融合变步长扰动观察的光伏发电系统MPPT算法研究[D]. 太原: 太原理工大学, 2017.
ZHAO Y.Research of MPPT algorithm based on PSO and variable step P&O in photovoltaic power generation system[D]. Taiyuan: Taiyuan University of Technology, 2017.
[13] 马永翔, 王雨阳, 闫群民, 等. 基于CSA算法的光伏阵列多峰最大功率跟踪研究[J]. 电源技术, 2021,45(1): 51-55.
MA Y X, WANG Y Y, YAN Q M, et al.Research on multi-peak maximum power tracking of photovoltaic array based on CSA[J]. Chinese journal of power sources, 2021, 45(1): 51-55.
[14] 赵帅旗, 肖辉, 刘忠兵, 等. 基于CSA-IP&O的局部遮阴下光伏最大功率点追踪[J]. 电力系统保护与控制, 2020, 48(5): 26-32.
ZHAO S Q, XIAO H, LIU Z B, et al.Photovoltaic maximum power point tracking under partial shading based on CSA-IP&O[J]. Power system protection and control, 2020, 48(5): 26-32.
[15] 杨永恒, 周克亮. 光伏电池建模及MPPT控制策略[J]. 电工技术学报, 2011, 26(S1): 229-234.
YANG Y H, ZHOU K L.Photovoltaic cell modeling and MPPT control strategies[J]. Transactions of China Electrotechnical Society, 2011, 26(S1): 229-234.
[16] 翟荣欣. 局部阴影条件下光伏系统的MPPT控制研究[D]. 长沙: 湖南大学, 2018.
ZHAI R X.MPPT control of photovoltaic system under local shadow[D]. Changsha: Hunan University, 2018.
[17] 王洪亮, 周于尧, 刘志坚, 等. 基于改进CS算法的光伏系统MPPT仿真研究[J]. 电子测量技术, 2020,43(7): 67-71.
WANG H L, ZHOU Y Y, LIU Z J, et al.Simulation of photovoltaic system MPPT based on improved CS algorithm[J]. Electronic measurement technology, 2020, 43(7): 67-71.
[18] 郗银. 基于变化因子的布谷鸟搜索算法[D]. 西安: 西安电子科技大学, 2018.
XI Y.Cuckoo search algorithm based on change factor[D]. Xi’an: Xidian University, 2018.
[19] 韩鹏, 李银红, 何璇, 等. 结合量子粒子群算法的光伏多峰最大功率点跟踪改进方法[J]. 电力系统自动化, 2016, 40(23): 101-108.
HAN P, LI Y H, HE X, et al.Improved method for photovoltaic multi-peak maximum power point tracking combined with quantum particle swarm algorithm[J]. Automation of electric power systems, 2016, 40(23): 101-108.
[20] 吴小进, 魏学业, 于蓉蓉, 等. 复杂光照环境下光伏阵列输出特性研究[J]. 中国电机工程学报, 2011, 31(S1): 162-167.
WU X J, WEI X Y, YU R R, et al.Study of output characteristics of PV array under complicated illumination environment[J]. Proceedings of the CSEE, 2011, 31(S1): 162-167.
[21] 李志军, 张奕楠, 王丽娟, 等. 基于改进量子粒子群算法的光伏多峰MPPT研究[J]. 太阳能学报, 2021, 42(5): 221-229.
LI Z J, ZHANG Y N, WANG L J, et al.Study on photovoltaic multi-peak MPPT based on improved quantum particle swarm algorithm[J]. Acta energiae solaris sinica, 2021, 42(5): 221-229.
[22] 石季英, 张登雨, 薛飞, 等. 基于改进灰狼优化-黄金分割混合算法的光伏阵列MPPT方法[J]. 电力系统及其自动化学报, 2019, 31(5): 21-26.
SHI J Y, ZHANG D Y, XUE F, et al.Maximum power point tracking method for photovoltaic array based on modified hybrid method of grey wolf optimization and golden-section optimization[J]. Proceedings of the CSU-EPSA, 2019, 31(5): 21-26.

基金

陕西省教育厅专项科研计划(15JK1125)

PDF(2223 KB)

Accesses

Citation

Detail

段落导航
相关文章

/