为减少加载过程中叶片挠度变形带来的测量误差,提出一种精准测量钢丝绳与风电叶片空间角度的数学模型。该模型构建的空间角度测量系统采用3个位移传感器,可实时测量钢丝绳与风电叶片所成三维角度,从而精确地对各加载点进行受力补偿,提高加载试验的协同性。以激光追踪仪的测量结果为基准对该系统的测量结果进行现场验证,结果表明该系统所测空间角度误差率仅为1.78%、1.96%和1.92%,同时经该空间角度测量系统补偿后的加载力曲线变化平稳,可较好地实现多节点力的协同加载。
Abstract
In order to reduce the measurement error caused by the deflection of the blade during the loading process, a mathematical model for accurately measuring the spatial angle between the wire rope and the wind turbine blade was proposed. The spatial angle measurement system constructed by this model adopted three displacement sensors, which could measure the three-dimensional angle formed by the wire rope and the wind turbine blade in real time, so as to accurately compensated the force of each loading point and improved the synergy of the loading test. The measurement results of the system were verified on-site based on the measurement results of the laser tracker. The results show that the error rate of the spatial angle measured by the system is only 1.78%, 1.96% and 1.92%. The loading force curve changes smoothly, which can better realize the coordinated loading of multi-node forces.
关键词
风电叶片 /
静力加载 /
钢丝绳 /
空间角度 /
测量系统
Key words
wind turbine blades /
static loading /
steel wire rope /
spatial angle /
measurement system
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张轶东, 刘腾飞, 房刚利, 等. 海上风电机组叶片断裂事故分析方法及预防措施[J]. 船舶工程, 2021, 43(增刊1): 134-138.
ZHANG Y D, LIU T F, FANG G L, et al.Analysis method and preventive measures of offshore wind turbine blade fracture accident[J]. Ship engineering, 2021, 43(Sup1): 134-138.
[2] 谭彦显, 黄珂, 罗书径. 风力发电机叶片连接用高强度螺栓断裂原因[J]. 理化检验-物理分册, 2021, 57(7): 52-56.
TAN Y X, HUANG K, LUO S J.Cause of fracture on high strength bolt for wind turbine blade connection[J]. Physical testing and chemical analysis part A-physical testing, 2021, 57(7): 52-56.
[3] LU L, WU H J, WU J Z.A case study for the optimization of moment-matching in wind turbine blade fatigue tests with a resonant-type exciting approach[J]. Renewable energy, 2021, 174: 769-785.
[4] 宋江北. 风电叶片复合材料刚度及强度关联模型研究[D]. 兰州: 兰州理工大学, 2021.
SONG J B.Research on stiffness and strength couple model of wind turbine blade composites[D]. Lanzhou: Lanzhou University of Technology, 2021.
[5] 黄涛. 双轴疲劳试验条件下风电叶片损伤模型[D]. 兰州: 兰州理工大学, 2021.
HUANG T.Fatigue damage model of wind turbine blade under biaxial conditions[D]. Lanzhou: Lanzhou University of Technology, 2021.
[6] 张玲玲. 基于BP神经网络PID控制的风电叶片静力加载系统[J]. 煤炭加工与综合利用, 2021(2): 88-91.
ZHANG L L.The static loading system of wind power blades based on BP neural network PID control[J]. Coal processing & comprehensive utilization, 2021(2): 88-91.
[7] 廖高华, 乌建中, 马怡. 全尺寸风电叶片疲劳加载载荷匹配及试验研究[J]. 太阳能学报, 2019, 40(6): 1756-1762.
LIAO G H, WU J Z, MA Y.Test and optimization of fatigue loading moment for full scale wind turbing blade[J]. Acta energiae solaris sinica, 2019, 40(6): 1756-1762.
[8] 张磊安, 魏修亭, 胡俊, 等. 静力载荷作用下的风电叶片空间轨迹精确测量模型[J]. 太阳能学报, 2019, 40(4): 1150-1154.
ZHANG L A, WEI X T, HU J, et al.Accurate measurement model of wind turbine blade space trajectory under static loading[J]. Acta energiae solaris sinica, 2019, 40(4): 1150-1154.
[9] 佀明华. 角度测量光电跟踪平台控制方法研究[D]. 石家庄: 石家庄铁道大学, 2019.
SI M H.Research on control method of angle measurement photoelectric tracking platform[D]. Shi jiazhuang: Shijiazhuang Tiedao University, 2019.
[10] DING J, YAN Z G, WE X C.High-accuracy recognition and localization of moving targets in an indoor environment using binocular stereo vision[J]. ISPRS international journal of geo-information, 2021, 10(4): 234.