[1] 康爽, 陈长征, 罗园庆, 等.基于微分形态学梯度风力发电机叶片缺陷边缘增强的红外检测研究[J]. 太阳能学报, 2021, 42(6): 432-437. KANG S, CHEN C Z, LUO Y Q, et al.Study on infrared detection edge enhancement of wind turbine blade defects based on differential morphology gradient[J]. Acta energiae solaris sinica, 2021, 42(6): 432-437. [2] BEALE C, NIEZRECKI C, INALPOLAT M.An adaptive wavelet packet denoising algorithm for enhanced active acoustic damage detection from wind turbine blades[J]. Mechanical systems and signal processing, 2020, 142: 106754. [3] ZHANG Y, ZHOU B, YU F, et al.Cluster analysis of acoustic emission signals and infrared thermography for defect evolution analysis of glass/epoxy composites[J]. Infrared physics & technology, 2021, 112(17): 103581. [4] BHANDARI A K, KUMAR A, SINGH G K.Improved knee transfer function and gamma correction based method for contrast and brightness enhancement of satellite image[J]. AEU-International journal of electronics and communications, 2015, 69(2): 579-589. [5] 赵素娜, 艾矫燕, 李世晓. 小波变换在图像照度不均校正中的应用[J]. 计算技术与自动化, 2010, 29(1): 99-101. ZHAO S N, AI J Y, LI S X.Application of wavelet transform in illumination uneven elimination[J]. Computing technology and automation, 2010, 29(1): 99-101. [6] 王殿伟, 韩鹏飞, 范九伦, 等. 基于光照-反射成像模型和形态学操作的多谱段图像增强算法[J]. 物理学报, 2018, 67(21): 104-114. WANG D W, HAN P F, FAN J L, et al.Multispectral image enhancement based on illuminance-reflection imaging model and morphology operation[J]. Acta physica sinica, 2018, 67(21): 104-114. [7] 顾兴龙, 王凯, 李露露, 等. 广义形态学闭开差值运算在滚动轴承弱故障诊断中的应用[J]. 中国机械工程, 2017, 28(21): 2595-2600. GU X L, WANG K, LI L L, et al.Applications of generalized morphological closed and open margin Operation to diagnose weak faults of rolling bearings[J]. China mechanical engineering, 2017, 28(21): 2595-2600. [8] HASSANPOUR H, SAMADIANI N, MAHDI SALEHI S M. Using morphological transforms to enhance the contrast of medical images[J]. The Egyptian journal of radiology and nuclear medicine, 2015, 46(2): 481-489. [9] 俞建卫, 罗振山, 尹延国, 等. 基于形态学边缘检测和小波阈值的摩擦副红外图像去噪[J]. 中国机械工程, 2013, 24(9): 1229-1232. YU J W, LUO Z S, YIN Y G, et al.Study on infrared image denoising of friction pairs based on morphological edge detection and wavelet threshold[J]. China mechanical engineering, 2013, 24(9):1229-1232. [10] PETER B, NORMAN S C, GRAHAM M G J, et al. Fast retinal vessel detection and measurement using wavelets and edge location refinement[J]. PLoS ONE, 2012, 7(3): 1-12. [11] 康爽, 陈长征, 赵思雨, 等. 自适应差异多尺度形态学的风力机叶片红外图像增强研究[J]. 中国机械工程, 2021, 32(7): 786-792. KANG S, CHEN C Z, ZHAO S Y, et al.Study of infrared image enhancement of wind turbine blades based on adaptive differential multiscale morphology[J]. China mechanical engineering, 2021, 32(7): 786-792. [12] LI Y B, LI G Y, YANG Y T, et al.A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology filter and modified hierarchical permutation entropy[J]. Mechanical systems and signal processing, 2018, 105: 319-337. [13] LYU J X, YU J B.Average combination difference morphological filters for fault feature extraction of bearing[J]. Mechanical systems and signal processing, 2018, 100: 827-845. [14] LI Y, ZUO M, CHEN Y, et al.An enhanced morphology gradient product filter for bearing fault detection[J]. Mechanical systems and signal processing, 2018, 109(SEP.): 166-184. [15] YAN X A, LIU Y, JIA M P.Research on an enhanced scale morphological-hat product filtering in incipient fault detection of rolling element bearings[J]. Measurement, 2019(2019):106856. [16] LI B, ZHANG P L, WANG Z J, et al.A weighted multi-scale morphological gradient filter for rolling element bearing fault detection[J]. ISA transactions, 2011, 50(4):599-608. [17] BUSTACARA-MEDINA C, FLÓREZ-VALENCIA L. An automatic stopping criterion for contrast enhancement using multi-scale top-hat transformation[J]. Sensing and imaging, 2019, 20(1): 26. [18] WANG Z,BOVIK A C.Mean squared error: love it or leave it? A new look at signal fidelity measures[J]. IEEE signal processing magazine, 2009, 26(1): 98-117. [19] RENIEBLAS G P, NOGUÉS AT, GONZALEZ AM, et al. Structural similarity index family for image quality assessment in radiological images[J]. Journal of medical imaging, 2017, 4(3): 035501. |