基于超级计算的大规模跟踪式光伏发电阵列风压分布研究

李正农, 胡存云, 吴红华, 王士涛, 特日根, 栾雪涛

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 242-251.

PDF(2288 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2288 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 242-251. DOI: 10.19912/j.0254-0096.tynxb.2022-0070

基于超级计算的大规模跟踪式光伏发电阵列风压分布研究

  • 李正农1,2, 胡存云1, 吴红华1, 王士涛3, 特日根1, 栾雪涛1
作者信息 +

RESEARCH ON WIND PRESSURE DISTRIBUTION OF LARGE-SCALE TRACKING PHOTOVOLTAIC POWER GENERATION ARRAY BASED ON SUPERCOMPUTING

  • Li Zhengnong1,2, Hu Cunyun1, Wu Honghua1, Wang Shitao3, Te Rigen1, Luan Xuetao1
Author information +
文章历史 +

摘要

首先对与跟踪式光伏组件结构相似的单个定日镜进行风洞测压试验和CFD数值模拟,然后将两种方法获得的结果进行对比,验证了该文所采用的CFD数值方法的可靠性。其次建立3种不同长宽比的跟踪式单体光伏组件模型,研究单体光伏组件在0°风向角下长宽比对其平均风压分布的影响。最后建立大规模太阳能跟踪器光伏阵列模型,对5种具有代表性意义的工况(来流风向角:0°、45°、90°、135°、180°)进行模拟研究,得到B类地貌风场条件下光伏组件群代表位置处光伏组件的平均风压系数分布规律。研究结果表明:来流风向角不同,光伏组件群中不同位置的光伏组件风压分布有所区别;45°和135°斜风向角下光伏组件所受平均风压最大,即45°和135°为最不利风向角;光伏组件群四周位置为组件群最不利受力位置。

Abstract

Firstly, the wind tunnel pressure test and CFD numerical simulation of the single heliostat with similar structure to the tracking photovoltaic module are carried out, and then the results obtained by the two methods are compared to verify the reliability of the CFD numerical method. Secondly, three tracking photovoltaic module models with different aspect ratios are established to study the influence of aspect ratio on the mean wind pressure distribution of single PV module at 0° wind angle. Finally, the photovoltaic array model of large-scale solar tracker is established, and five representative working conditions (incoming wind direction angle: 0°, 45°, 90°, 135°, 180°) are simulated to obtain the distribution law of mean wind pressure coefficient of photovoltaic modules at the representative position of photovoltaic module group under the condition of class B landform wind field. The results show that the wind pressure distribution of PV modules at different positions in the PV module group is different with the different incoming wind direction angle. The mean wind pressure on PV modules is the largest at 45° and 135° oblique wind angles, that is, 45° and 135° are the most unfavorable wind angles. The position around the photovoltaic module group is the most unfavorable stress position of the module group.

关键词

光伏组件 / 超级计算机 / 平均风压系数 / 最不利风向角 / 数值模拟

Key words

PV modules / supercomputer / mean wind pressure coefficient / most unfavorable wind angle / numerical simulation

引用本文

导出引用
李正农, 胡存云, 吴红华, 王士涛, 特日根, 栾雪涛. 基于超级计算的大规模跟踪式光伏发电阵列风压分布研究[J]. 太阳能学报. 2023, 44(6): 242-251 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0070
Li Zhengnong, Hu Cunyun, Wu Honghua, Wang Shitao, Te Rigen, Luan Xuetao. RESEARCH ON WIND PRESSURE DISTRIBUTION OF LARGE-SCALE TRACKING PHOTOVOLTAIC POWER GENERATION ARRAY BASED ON SUPERCOMPUTING[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 242-251 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0070
中图分类号: TU312+.1   

参考文献

[1] PETERKA J A, BIENKIEWICZ B, HOSOYA N, et al.Heliostat mean wind load reductio[J]. Energy, 1987, 12(3/4): 261-267.
[2] PFAHL A, BUSELMERIER M, ZASCHKE M.Wind loads on heliostats and photovoltaic trackers of various aspect ratios[J]. Solar energy, 2011, 85(9): 2185-2201.
[3] PFAHL A, UHLEMANN H.Wind loads on heliostats and photovoltaic trackers at various Reynolds numbers[J]. Journal of wind engineering and industrial aerodynamics, 2011, 99(9): 964-968.
[4] 王莺歌, 李正农, 宫博. 定日镜的风压分布与脉动特性[J]. 自然灾害学报, 2007, 16(6): 187-194.
WANG Y G, LI Z N, GONG B.Distribution and fluctuation characteristics of wind pressure on heliostat[J]. Journal of natural disasters, 2007, 16(6): 187-194.
[5] 宫博, 李正农, 吴红华, 等. 太阳能定日镜结构基于频域的风振响应分析[J]. 太阳能学报, 2009, 30(6): 759-763.
GONG B, LI Z N, WU H H, et al.Wind vibration response analysis of solar heliostat structure based on frequency domain[J]. Acta energiae solaris sinica, 2009, 30(6): 759-763.
[6] GONG B, LI Z N, WANG Z F, et al.Wind-induced dynamic response of heliostat[J]. Renewable energy, 2012, 38(1): 206-213.
[7] 邹琼, 李正农, 吴红华. 槽式聚光镜的脉动风压特性与极值风压分布[J]. 太阳能学报, 2016, 37(2): 407-414.
ZOU Q, LI Z N, WU H H.Extreme wind pressure distribution and fluctuation characteristics of trough concentrating mirror[J]. Acta energiae solaris sinica, 2016, 37(2): 407-414.
[8] 李正农, 吴卫祥, 梁笑寒, 等. 基于实测的塔式太阳能定日镜动力特性分析[J]. 太阳能学报, 2014, 35(11): 2133-2138.
LI Z N, WU W X, LIANG X H, et al.Dynamic characteristics analysis for solar power tower heliostat based on the field measurements[J]. Acta energiae solaris sinica, 2014, 35(11): 2133-2138.
[9] 朱春燕. 基于超级计算的大规模定日镜群风压分布研究[D]. 长沙: 湖南大学, 2019.
ZHU C Y.Research on wind pressure distribution of large-scale heliostats based on supercomputing[D]. Changsha: Hunan University, 2019.
[10] WARSIDO W P, BITSUAMLAK G T, BARATA J, et al.Influence of spacing parameters on the wind loading of solar array[J]. Journal of fluids and structures, 2014, 48: 295-315.
[11] ABIOLA-OGEDENGBE A, HANGAN H, SIDDIQUI K.Experimental investigation of wind effects on a standalone photovoltaic(PV) module[J]. Renewable energy, 2015, 78: 657-665.
[12] REINA G P, STEFANO G D.Computational evaluation of wind loads on sun-tracking ground-mounted photovoltaic panel arrays[J]. Journal of wind engineering and industrial aerodynamics, 2017, 170: 283-293.
[13] 阮辉, 廖伟丽, 王康生, 等. 光伏阵列表面风荷载数值研究[J]. 太阳能学报, 2015, 36(4): 871-877.
RUAN H, LIAO W L, WANG K S, et al.Numerical research on surface wind load of PV array[J]. Acta energiae solaris sinica, 2015, 36(4): 871-877.
[14] 马文勇, 柴晓兵, 刘庆宽. 底部阻塞对太阳能光伏板风荷载的影响研究[J]. 建筑结构, 2019, 49(2): 129-134.
MA W Y, CHAI X B, LIU Q K.Study on effect of bottom flow obstruction on wind load of solar photovoltaic panels[J]. Building structure, 2019, 49(2): 129-134.
[15] 楼文娟, 单弘扬, 杨臻,等. 超大型阵列光伏板体型系数遮挡效应研究[J]. 建筑结构学报, 2021, 42(5): 47-54.
LOU W J, SHAN H Y, YANG Z, et al.Study of shielding effect on shape coefficient of super-large photovoltaic arrays[J]. Journal of building structures, 2021, 42(5): 47-54.
[16] GB 50009—2012, 建筑结构荷载规范[S].
GB 50009—2012, Load code for the design of building structures[S].
[17] 李正农, 朱春燕. 基于超级计算的大规模定日镜群风压分布研究[J]. 太阳能学报, 2021, 42(5): 309-316.
LI Z N, ZHU C Y.Research on wind pressure distribution of large-scale heliostats based on supercomputing[J]. Acta energiae solaris sinica, 2021, 42(5): 309-316.

基金

国家自然科学基金(52178476)

PDF(2288 KB)

Accesses

Citation

Detail

段落导航
相关文章

/