针对风电机组在极端湍流工况常出现载荷极值,危及机组运行安全的问题,提出基于风电机组监测数据的湍流强度识别方法,构建利用机舱加速度间接计算湍流阈值的计算模型,并进一步提出极端湍流工况的降载策略。降载往往会造成机组发电量的损失,由此构建极端湍流工况降载优化数学模型,通过求解满足约束条件的目标函数极值,实现降载与发电量的双优兼顾。以某5 MW机组为例,通过数值仿真对降载效果进行验证,结果表明在不损失正常湍流工况发电量的情况下,机组轮毂My和塔顶My极限载荷分别降低15%和12.1%,其他部位载荷降低约5%。
Abstract
Aiming at the problem that the extreme load of wind turbine often occurs in extreme turbulent flow conditions, which endangers the operation safety of wind turbine, a turbulence intensity identification method based on wind turbine monitoring data was proposed, a calculation model of turbulence threshold indirectly calculated by nacelle acceleration was constructed, and a load reduction strategy was proposed for extreme turbulent flow conditions. Load reduction often results in generating capacity loss, so a mathematical model for load reduction optimization under extreme turbulent flow conditions is established. By solving the extreme value of the objective function satisfying the constraints, both load reduction and generating capacity can be achieved. Finally, a 5 MW wind turbine is taken as an example to verify the research results through numerical simulation, The results show that the ultimate loads of hub My and tower top My are reduced by 15% and 12.1%,respectively, and the loads of other parts are reduced by about 5%, without loss of power generation under normal conditions.
关键词
风电机组 /
湍流 /
监测 /
降载 /
湍流阈值
Key words
wind turbines /
turbulence /
monitoring /
load reduction /
turbulence threshold
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.
LI H, LIU D, YAO D Y.Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
[2] IEC 61400-1, Wind energy generation systems-part 1: design requirements[S].
[3] 韩花丽. 风电机组载荷建模及仿真优化研究[D]. 重庆: 重庆大学, 2015.
HAN H L.Study on modeling, load simulation and load optimization of wind turbine[D]. Chongqing: Chongqing University, 2015.
[4] 李欣, 张明明, 杨洪磊. 张力腿漂浮式风电机组疲劳载荷智能控制研究[J]. 太阳能学报, 2020, 41(9): 278-286.
LI X, ZHANG M M, YANG H L.Numerical investigation of smart fatigue load control on tension leg platform floating wind turbine[J]. Acta energiae solaris sinica, 2020, 41(9): 278-286.
[5] 周峰. 基于动力学耦合的风电机组载荷控制[D]. 北京: 华北电力大学, 2017.
ZHOU F.Wind turbine load control based on dynamic coupling[D]. Beijing: North China Electric Power University, 2017.
[6] KANEV S, ENGELEN T.Wind turbine extreme gust control[J]. Wind energy, 2010, 13(1): 18-35.
[7] 张林伟, 梁湿, 杨峰, 等. 极端阵风条件下大型风力机叶片极限载荷研究[J]. 太阳能学报, 2016, 37(6): 1573-1578.
ZHANG L W, LIANG S, YANG F, et al.Extreme load analysis of large scale wind turbine blade under extreme gust condition[J]. Acta energiae solaris sinica, 2016, 37(6): 1573-1578.
[8] CAI X, WANG Y Z, XU B F, et al.Performance and effect of load mitigation of a trailing-edge flap in a large-scale offshore wind turbine[J]. Journal of marine science and engineering, 2020, 8(2): 72.
[9] BOTTASSO C L, CROCE A, RIBOLDI C E D, et al. Cyclic pitch control for the reduction of ultimate loads on wind turbines[C]//Science of Making Torque from Wind Conference, Copenhagen, Denmark, 2014.
[10] 闫学勤, 王维庆, 王海云. 基于IQPI-R的风力机独立变桨距控制策略研究[J]. 太阳能学报, 2020, 41(10): 229-235.
YAN X Q, WANG W Q, WANG H Y.Research on individual pitch control strategy of wind turbine based on IQPI-R[J]. Acta energiae solaris sinica, 2020, 41(10): 229-235.
[11] BOSSANYI E A, RAMTHARAN G, SAVINI B.The importance of control in wind turbine design and loading[C]//Proceedings of the 17th Mediterranean Conference on Control and Automation, 17th Mediterranean Conference on Control & Automation, Thessaloniki, Greece, 2009: 24-26.
[12] 何伟. 湍流风场模拟与风力发电机组载荷特性研究[D]. 北京: 华北电力大学, 2013.
HE W.Research on turbulent wind field simulation and load characteristics of wind turbines[D]. Beijing: North China Electric Power University, 2013.
[13] 张超越, 董晔弘, 张凯, 等. 基于机舱式多普勒脉冲激光雷达测风的风速重构技术[J]. 船舶工程, 2019, 41(12): 107-112.
ZHANG C Y, DONG Y H, ZHANG K, et al.Wind speed reconstruction technology based on nacelle-mounted doppler pulsed lidar wind speed measurements[J]. Ship engineering, 2019, 41(12): 107-112.
[14] 庄子波, 刘晓宇, 陈星. 基于激光雷达脉冲特性的湍流风速估计方法[J]. 红外与激光工程, 2018, 47(11): 23-30.
ZHUANG Z B, LIU X Y, CHEN X.Estimation method of turbulent wind speed based on lidar pulse characteristics[J]. Infrared and laser engineering, 2018, 47(11): 23-30.
[15] CORTINA G, CALAF M.Turbulence upstream of wind turbines: a large-eddy simulation approach to investigate the use of wind lidars[J]. Renewable energy, 2017, 105(5): 354-365.
[16] DICKLER S, WIENS M, THONNISSEN F, et al.Requirements on super-short-term wind speed predictions for model predictive wind turbine control[C]//2019 18th European Control Conference(ECC), Naples, Italy, 2019.
[17] TUHFE G, GREGOR G.Estimation of turbulence intensity using rotor effective wind speed in Lillgrund and Horns Rev-I offshore wind farms[J]. Renewable energy, 2016, 99: 524-532.
[18] LIO A W H, MENG F. Effective wind speed estimation for wind turbines in down-regulation[J]. Journal of physics: conference series, 2020, 1452(1): 012008.
[19] 石家祥, 宋小全, 吴松华, 等. 风力发电机振动的多普勒激光雷达遥测技术[J]. 光学精密工程, 2020, 28(10): 2180-2191.
SHI J X, SONG X Q, WU S H, et al.Doppler lidar telemetry for wind turbine vibration[J]. Optics and precision engineering, 2020, 28(10): 2180-2191.
[20] 巫发明, 杨从新, 王靛, 等. 湍流强度对风电机组动力学特性及载荷的影响[J]. 农业工程学报, 2020, 36(13): 48-55.
WU F M, YANG C X, WANG D, et al.Effects of turbulence intensity on dynamic characteristics and load of wind turbine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 48-55.
[21] ENGELS W P, SUBHANI S, ZAFAR H, et al.Extending wind turbine operational conditions: a comparison of set point adaptation and leg individual pitch control for highly turbulent wind[C]//Proceedings of the Science of Making Torque from Wind(TORQUE 2014), Copenhagen, Denmark, 2014: 18-20.
[22] AHO J, FLEMING P, PAO L Y.Active power control of wind turbines for ancillary services: a comparison of pitch and torque control methodologies[C]//2016 American Control Conference(ACC), Boston,USA, 2016: 1407-1412.
[23] DONG L, LIO W H, PIRRUNG G R.Analysis and design of an adaptive turbulence-based controller for wind turbines[J]. Renewable energy, 2021, 178: 730-744.
[24] 蔡新, 张洪建. 基于TMD控制的浮式风力机稳定性研究[J]. 河海大学学报(自然科学版), 2021, 49(1): 70-76.
CAI X, ZHANG H J.Stability study of floating wind turbine based on TMD control[J]. Journal of Hohai University(natural sciences edition), 2021, 49(1): 70-76.
[25] 刘展. MW级变速变桨风力发电机组系统振动故障诊断技术与减振降载方法研究[D]. 北京: 北京交通大学, 2019.
LIU Z.Vibration fault diagnosis technology and load reduction method for MW variable speed and variable pitch wind turbine system[D]. Beijing: Beijing Jiaotong University, 2019.
基金
江苏高校首批2011计划“沿海开发与保护协同创新中心”计划(苏政办发[2013]56号)