炼化油泥醇解制备轻质生物油的研究

李秉硕, 杜马赫煊, 杨天华, 开兴平, 孙洋

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 514-522.

PDF(2403 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2403 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 514-522. DOI: 10.19912/j.0254-0096.tynxb.2022-0077

炼化油泥醇解制备轻质生物油的研究

  • 李秉硕, 杜马赫煊, 杨天华, 开兴平, 孙洋
作者信息 +

STUDY ON PREPARATION OF LIGHT BIO-OIL BY ALCOHOLYSIS OF PETROCHEMICAL SLUDGE

  • Li Bingshuo, Du Mahexuan, Yang Tianhua, Kai Xingping, Sun Yang
Author information +
文章历史 +

摘要

通过超临界醇解炼化油泥回收轻质生物油,实验表明340 ℃、60 min、油泥与乙醇质量比1∶2时油相收率最高(59.37%),且饱和烃与芳香烃含量分别达到15.78%和16.58%。脂肪烃、环烷烃与萘、菲、芴是饱和烃与芳香烃的主要组分,但直链烃在卤素催化下,通过羟基化、羧基化和酯化反应生成脂肪酸脂。油泥中的硫以噻喃形态进入轻质油,但噻喃会在乙醇作用下开环磺化、磺酰缩合使硫转移至沥青质;氮则以吡啶形态进入轻质油,重质油中的氮则以氨基和酰胺形态存在。

Abstract

The light bio-oil was recovered by supercritical ethanol liquefaction of petrochemical sludge(PS) in this study. The results show that under 340 ℃, 60 min and PS/ethanol mass ratio 1∶2 conditions, the highest oil phase yield is 59.37% and the contents of saturates and aromatics are 15.78% and 16.58%, respectively. Aliphatic hydrocarbons, cycloalkanes, naphthalene, phenanthrene and fluorene are the main components of saturated hydrocarbons and aromatic hydrocarbons. Among them, linear hydrocarbons generat fatty acid lipids through hydroxylation, carboxylation and esterification under the catalysis of halogen. The sulfur in PS enters light oil in the form of thiophene, but sulfur can be transfer to asphaltenes by ring-opening sulfonation and sulfonyl condensation in the presence of ethanol. Nitrogen is transferred into light oil in pyridine form, while the nitrogen in the heavy oil is in the form of amines and amides.

关键词

超临界流体 / 乙醇 / 液化 / 生物油 / 炼化油泥 / 饱和烃 / 稠环芳烃

Key words

supercritical fluids / ethanol / liquefaction / bio-oil / petrochemical sludge / saturated hydrocarbon / polycyclic aromatic hydrocarbons

引用本文

导出引用
李秉硕, 杜马赫煊, 杨天华, 开兴平, 孙洋. 炼化油泥醇解制备轻质生物油的研究[J]. 太阳能学报. 2023, 44(6): 514-522 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0077
Li Bingshuo, Du Mahexuan, Yang Tianhua, Kai Xingping, Sun Yang. STUDY ON PREPARATION OF LIGHT BIO-OIL BY ALCOHOLYSIS OF PETROCHEMICAL SLUDGE[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 514-522 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0077
中图分类号: X742    TE992.3   

参考文献

[1] 赵丽萍, 张彪, 王鑫, 等. 不同种类生物质原料的微波气化性能研究[J]. 太阳能学报, 2021, 42(9): 394-399.
ZHAO L P, ZHANG B, WANG X, et al.Study on gasification performance of different kinds of biomass with microwave heating[J]. Acta energiae solaris sinica, 2021, 42(9): 394-399.
[2] HUI K L, TANG J, LU H J, et al.Status and prospect of oil recovery from oily sludge: a review[J]. Arabian journal of chemistry, 2020, 13(8): 6523-6543.
[3] TIAN X M, SONG Y D, SHEN Z Q, et al.A comprehensive review on toxic petrochemical wastewater pretreatment and advanced treatment[J]. Journal of cleaner production, 2020, 245: 118692.
[4] WANG M H, WANG C H, HUANG S, et al.Study on asphalt volatile organic compounds emission reduction: a state-of-the-art review[J]. Journal of cleaner production, 2021, 318: 128596.
[5] ZHU J J, ZHU L, GUO D D, et al.Co-pyrolysis of petrochemical sludge and sawdust for syngas production by TG-MS and fixed bed reactor[J]. International journal of hydrogen energy, 2020, 45(55): 30232-30243.
[6] ABDULREDHA M M, SITI ASLINA H, LUQMAN C A.Overview on petroleum emulsions, formation, influence and demulsification treatment techniques[J]. Arabian journal of chemistry, 2020, 13(1): 3403-3428.
[7] WANG J, LIU T L, HUANG Q X, et al.Production and characterization of high quality activated carbon from oily sludge[J]. Fuel processing technology, 2017, 162: 13-19.
[8] NIE F, HE D M, GUAN J, et al.Oil sand pyrolysis: evolution of volatiles and contributions from mineral, bitumen, maltene, and SARA fractions[J]. Fuel, 2018, 224: 726-739.
[9] PERRUT M, PERRUT V.Towards ingredients by combining supercritical fluids with other processes[J]. The journal of supercritical fluids, 2018, 134: 214-219.
[10] NAZEM M A, TAVAKOLI O.Bio-oil production from refinery oily sludge using hydrothermal liquefaction technology[J]. The journal of supercritical fluids, 2017, 127: 33-40.
[11] KOZHEVNIKOV I V, NUZHDIN A L, MARTYANOV O N.Transformation of petroleum asphaltenes in supercritical water[J]. The journal of supercritical fluids, 2010, 55(1): 217-222.
[12] WANG C Y, WU C Y, ZHANG H, et al.Hydrothermal treatment of petrochemical sludge in subcritical and supercritical water: oil phase degradation and syngas production[J]. Chemosphere, 2021, 278: 130392.
[13] CHEN G Y, LI J T, LI K, et al.Nitrogen, sulfur, chlorine containing pollutants releasing characteristics during pyrolysis and combustion of oily sludge[J]. Fuel, 2020, 273: 117772.
[14] CHIBIRYAEV A M, KOZHEVNIKOV I V, MARTYANOV O N.Transformation of petroleum asphaltenes in supercritical alcohols: a tool to change H/C ratio and remove S and N atoms from refined products[J]. Catalysis today, 2019, 329: 177-186.
[15] ASTM D95-13, Standard test method for water in petroleum products and bituminous materials by distillation[S].
[16] HUANG Q X, HAN X, MAO F Y, et al.A model for predicting solid particle behavior in petroleum sludge during centrifugation[J]. Fuel, 2014, 117: 95-102.
[17] JIN X X, TENG D, FANG J, et al.Petroleum oil and products recovery from oily sludge: characterization and analysis of pyrolysis products[J]. Environmental research, 2021, 202: 111675.
[18] SHENG Q, WANG G, JIN N, et al.Three-level structure change of asphaltenes undergoing conversion in a hydrogen donor solvent[J]. Fuel, 2019, 255: 115736.
[19] NGUYEN N T, KANG K H, LEE C W, et al.Structure comparison of asphaltene aggregates from hydrothermal and catalytic hydrothermal cracking of C5-isolated asphaltene[J]. Fuel, 2019, 235: 677-686.
[20] MAGHREBI R, BUFFI M, BONDIOLI P, et al.Isomerization of long-chain fatty acids and long-chain hydrocarbons: a review[J]. Renewable and sustainable energy reviews, 2021, 149, 111264.
[21] MIKULEC J, CVENGROŠ J, JORíKOVÁ Ľ, et al. Second generation diesel fuel from renewable sources[J]. Journal of cleaner production, 2010, 18(9): 917-926.
[22] CHEN Y, WU Y L, ZHANG P L, et al.Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water[J]. Bioresource technology, 2012, 124: 190-198.
[23] GALADIMA A, MURAZA O.Ring opening of hydrocarbons for diesel and aromatics production: design of heterogeneous catalytic systems[J]. Fuel, 2016, 181: 618-629.
[24] QI W Y, LI Y H, LIU Z Y, et al.Decomposition mechanism of thiophene compounds in heavy oil under supercritical water[J]. Chemical engineering science, 2020, 228: 115979.
[25] CHEN X Y, GAO J J, LU Y Z, et al.Acylation desulfurization of heavy cracking oil as a supplementary oil upgrading pathway[J]. Fuel processing technology, 2015, 130: 7-11.
[26] LIN Y, NAN G Z, LI Y F, et al.Synthesis of sulfonate of alkylated extract of FCC slurry for enhancing oil recovery[J]. Fuel, 2020, 260: 116299.
[27] 杨天华, 佟瑶, 李秉硕, 等. SDS联合亚临界水预处理对污泥水热液化制油的影响[J]. 太阳能学报, 2021, 42(5): 477-482.
YANG T H, TONG Y, LI B S, et al.Combined(SDS+subcritical water) pretreatment effect on hydro-liquefaction of municipal sludge[J]. Acta energiae solaris sinica, 2021, 42(5): 477-482.
[28] LIU Z H, CAO S S, YU W J, et al.Site-selective C—H benzylation of alkanes with N-Triftosylhydrazones leading to alkyl aromatics[J]. Chem, 2020, 6(8): 2110-2124.

基金

国家自然科学基金(51876131)

PDF(2403 KB)

Accesses

Citation

Detail

段落导航
相关文章

/