针对海洋温差能发电系统设计了发电功率为3 kW的向心透平,并使用CFD技术对设计的透平进行仿真研究和变工况分析,最后分析了动静叶径向间隙以及转子叶片数量对向心透平性能的影响。结果表明:设计的透平性能良好,等熵效率为84.96%;随着转速升高,透平的效率先增大后减少;透平的最佳转速也会随入口压力的增大而增加。入口压力升高会增加透平的输出功;随着转速的增大,流量逐渐减小。合理选择喷嘴与动叶轮之间的径向间隙,可使喷嘴出口处工质流动更加均匀;另外,将透平的转子叶片数量增加到8个,可提高透平性能。
Abstract
Aiming at the high-efficiency OTEC application, a 3 kW radial-inflow turbine using R134a was constructed. In addition, a 3D CFD simulation was carried out to research the turbine performance and analyze the variable conditions. Finally, the influences of radial clearance and the number of rotor blades on the performance of radial-inflow turbines are analyzed. It is indicated that the performance of the designed turbine is satisfactory with a theoretical isentropic efficiency of 84.96%. The results show that the optimal rotational speed of turbine increases with the increasement of inlet pressure. When the rotational speeds deviate from the optimal value, the turbine efficiency decreases. The results also indicate that the increasement of inlet pressure increases the output work of turbine. With the increasement of rotational speed, the flow rate gradually decreases. In terms of optimization, the radial clearance between the nozzle and the rotor makes the working fluid flow more uniform at the nozzle outlet. Finally, the turbine performance is improved by increasing the number of rotor blades to 8.
关键词
海洋温差能发电 /
有机朗肯循环 /
向心透平 /
数值模拟 /
R134a
Key words
ocean thermal energy conversion /
organic Rankine cycle /
radial-inflow turbine /
numerical simulation /
R134a
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LANGER J,QUIST J, BLOK K.Recent progress in the economics of ocean thermal energy conversion: critical review and research agenda[J]. Renewable and sustainable energy reviews, 2020, 130: 109960.
[2] NITHESH K G, CHATTERJEE D, OH C, et al.Design and performance analysis of radial-inflow turboexpander for OTEC application[J]. Renewable energy, 2016, 85: 834-843.
[3] 韩中合, 赵若丞, 范伟. 有机工质向心透平变工况性能预测及系统性能分析[J]. 太阳能学报, 2019, 40(12): 3409-3416.
HAN Z H,ZHAO R C, FAN W.Off-design performance prediction and system thermal performance analysis of radial turbine with organic fluid[J]. Acta energiae solaris sinica, 2019, 40(12): 3409-3416.
[4] FIASCHI D, MANFRIDA G, MARASCHIELLO F.Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles[J]. Applied energy, 2012, 97: 601-608.
[5] 李艳, 李海波, 顾春伟. 有机工质向心透平气动设计与变工况性能预测[J]. 工程热物理学报, 2013, 34(1): 63-66.
LI Y,LI H B,GU C W.Aerodynamic design and off-design performance prediction of radial-inflow turbine with organic gas as working fluid[J]. Journal of engineering thermophysics, 2013, 34(1): 63-66.
[6] 葛云征, 彭景平, 吴浩宇, 等. 海洋温差能向心透平的气动设计及性能研究[J]. 可再生能源, 2019, 37(10): 1560-1566.
GE Y Z,PENG J P,WU H Y,et al.Design and performance study of a radial-inflow tubine in OTEC[J]. Renewable energy resources, 2019, 37(10): 1560-1566.
[7] SAURET E, GU Y T.Three-dimensional off-design numerical analysis of an organic Rankine cycle radial-inflow turbine[J]. Applied energy, 2014, 135: 202-211.
[8] DU Y, CHEN K, DAI Y P.A study of the optimal control approach for a Kalina cycle system using a radial-inflow turbine with variable nozzles at off-design conditions[J]. Applied thermal engineering, 2019, 149: 1008-1022.
[9] 肖刚, 卢嘉冀, 周鑫, 等. 多能互补布雷顿循环中向心透平性能研究[J]. 太阳能学报, 2021, 42(6): 198-202.
XIAO G,LU J J,ZHOU X,et al.Characteristic of radial turbine for solar hybrid brayton cycle system[J]. Acta energiae solaris sinica, 2021, 42(6): 198-202.
[10] KIM D Y, KIM Y T.Preliminary design and performance analysis of a radial inflow turbine for ocean thermal energy conversion[J]. Renewable energy, 2017, 106: 255-263.
[11] 计光华. 透平膨胀机[M]. 北京: 机械工业出版社, 1989: 114-129.
JI G H.Turbine expander[M]. Beijing: Machinery Industry Press,1989: 114-129.
[12] ANSYS, Inc.ANSYS CFX-solver theory guide[M]. Canonsburg: ANSYS, Inc., 2016: 79-91.
[13] KERRY L M, JEFFREY E H.Experimental performance and analysis of 15.04 centimeter-tip-diameter, radial-inflow turbine with work factor of 1.126 and thick blading[R]. NASA TP-1730, 1980.
基金
国家重点研发计划(2019YFB1504303)