计及前瞻风险的综合能源系统低碳经济调度优化

朱西平, 江强, 钟宇, 姚显億, 刘明航, 罗惠文

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 113-121.

PDF(2064 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2064 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 113-121. DOI: 10.19912/j.0254-0096.tynxb.2022-0081

计及前瞻风险的综合能源系统低碳经济调度优化

  • 朱西平, 江强, 钟宇, 姚显億, 刘明航, 罗惠文
作者信息 +

LOW-CARBON ECONOMIC DISPATCH OPTIMIZATION OF INTEGRATED ENERGY SYSTEM CONSIDERING FORWARD-LOOKING RISKS

  • Zhu Xiping, Jiang Qiang, Zhong Yu, Yao Xianyi, Liu Minghang, Luo Huiwen
Author information +
文章历史 +

摘要

针对可再生能源波动性给综合能源系统(IES)稳定运行带来的巨大挑战,提出一种考虑前瞻风险和经济环境效益的IES调度优化方法。以系统运行成本、污染排放最小为目标,通过蒙特卡洛法生成风光及负荷不确定性概率场景,运用负荷损失值分析不确定性因素潜在风险规模,基于条件风险价值理论控制系统运行风险,引入综合需求响应规划降低运营成本,通过模糊决策算法获得最优方案。算例分析表明:该方案在完成低碳经济调度目标下,实现系统可靠运行且兼具灵活性,提升系统经济环境效益。

Abstract

In response to the great challenges posed by the volatility of renewable energy resources to the stable operation of integrated energy system (IES), an IES scheduling optimization method considering forward-looking risks and economic and environmental benefits is proposed. With the objective of minimizing system operation cost and pollution emission, the scenery and load uncertainty probability scenarios are generated by Monte Carlo method, the potential risk scale of uncertainty factors is analyzed based on load loss values, the system operation risk is controlled by applying conditional value-at-risk theory, the operation cost is reduced by introducing integrated demand response planning, and the optimal solution is obtained by fuzzy decision algorithm. The analysis of the algorithm shows that the proposed scheme achieves reliable operation and flexibility of the system under the goal of low-carbon economic dispatch, and improves the economic and environmental benefits of the system.

关键词

可再生能源 / 综合能源系统 / 不确定性 / 综合需求响应 / 低碳经济

Key words

renewable energy / integrated energy systems / uncertainty / integrated demand response / low-carbon economy

引用本文

导出引用
朱西平, 江强, 钟宇, 姚显億, 刘明航, 罗惠文. 计及前瞻风险的综合能源系统低碳经济调度优化[J]. 太阳能学报. 2023, 44(6): 113-121 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0081
Zhu Xiping, Jiang Qiang, Zhong Yu, Yao Xianyi, Liu Minghang, Luo Huiwen. LOW-CARBON ECONOMIC DISPATCH OPTIMIZATION OF INTEGRATED ENERGY SYSTEM CONSIDERING FORWARD-LOOKING RISKS[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 113-121 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0081
中图分类号: TM73   

参考文献

[1] 张显, 史连军. 中国电力市场未来研究方向及关键技术[J]. 电力系统自动化, 2020, 44(16): 1-11.
ZHANG X, SHI L J.Future research areas and key technologies of electricity market in China[J]. Automation of electric power systems, 2020, 44(16): 1-11.
[2] XING X T, LIN J, SONG Y H, et al.Modeling and operation of the power-to-gas system for renewables integration: a review[J]. CSEE journal of power and energy systems, 2018, 4(2): 168-178.
[3] 王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95.
WANG Y Z, KANG L G, ZHANG J, et al.Development history, typical form and future trend of integrated energy system[J]. Acta energiae solaris sinica, 2021, 42(8): 84-95.
[4] 陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020, 40(17): 5493-5506.
CHEN G P, DONG Y, LIANG Z F.Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40(17): 5493-5506.
[5] 曾博, 徐富强, 刘裕, 等. 考虑可再生能源与需求响应协同增效的能量枢纽多目标区间优化规划方法[J]. 中国电机工程学报, 2021, 41(21): 7212-7225.
ZENG B, XU F Q, LIU Y, et al.Multi-objective interval optimization approach for energy hub planning with consideration of renewable energy and demand response synergies[J]. Proceedings of the CSEE, 2021, 41(21): 7212-7225.
[6] 陈海鹏, 陈晋冬, 张忠, 等. 计及灵活运行碳捕集电厂捕获能耗的电力系统低碳经济调度[J]. 电力自动化设备, 2021, 41(9): 133-139.
CHEN H P, CHEN J D, ZHANG Z, et al.Low-carbon economic dispatching of power system considering capture energy consumption of carbon capture power plants with flexible operation mode[J]. Electric power automation equipment, 2021, 41(9): 133-139.
[7] LACH J, WROBEL K, WROBEL J, et al.Applications of carbon in lead-acid batteries: a review[J]. Journal of solid state electrochemistry, 2019, 23: 693-705.
[8] 肖白, 杨宇, 姜卓, 等. 风电-抽水蓄能联合系统中抽蓄电站容量的优化规划[J]. 太阳能学报, 2020, 41(12): 270-277.
XIAO B, YANG Y, JIANG Z, et al.Optimal planning of capacity of pumped storage power station in wind power-pumped storage system[J]. Acta energiae solaris sinica, 2020, 41(12): 270-277.
[9] ZHOU Q, DU D M, LU C, et al.A review of thermal energy storage in compressed air energy storage system[J]. Energy, 2019, 188: 115993.
[10] YANG H B, YOU P C, SHANG C.Distributed planning of electricity and natural gas networks and energy hubs[J]. Applied energy, 2021, 282: 116090.
[11] 孙亮, 孙健, 张程, 等. 计及需求侧响应的微能源网日前调度及定量评估[J]. 太阳能学报, 2021, 42(9): 461-469.
SUN L, SUN J, ZHANG C, et al.Day-ahead schedule and quantitation evaluation of micro-energy network considered requirement-side response[J]. Acta energiae solaris sinica, 2021, 42(9): 461-469.
[12] 李康平, 张展耀, 王飞, 等. 基于GAN场景模拟与条件风险价值的独立型微网容量随机优化配置模型[J]. 电网技术, 2019, 43(5): 1717-1725.
LI K P, ZHANG Z Y, WANG F, et al.Stochastic optimization model of capacity configuration for stand-alone microgrid based on scenario simulation using GAN and conditional value at risk[J]. Power system technology, 2019, 43(5): 1717-1725.
[13] 姚志力, 王志新. 计及风光不确定性的综合能源系统两层级协同优化配置方法[J]. 电网技术, 2020, 44(12): 4521-4531.
YAO Z L, WANG Z X.Two-level collaborative optimal allocation method of integrated energy system considering wind and solar uncertainty[J]. Power system technology, 2020, 44(12): 4521-4531.
[14] GHOLIZADEH N, VAHID-PAKDEL M J, MOHAMMADI-IVATLOO B. Enhancement of demand supply’s security using power to gas technology in networked energy hubs[J]. International journal of electrical power & energy systems, 2019, 109: 83-94.
[15] LI Z M, XU Y, FENG X, et al.Optimal stochastic deployment of heterogeneous energy storage in a residential multienergy microgrid with demand-side management[J]. IEEE transactions on industrial informatics, 2021, 17(2): 991-1004.
[16] MOHAMMADI M, NOOROLLAHI Y, MOHAMMADI-IVATLOO B.Fuzzy-based scheduling of wind integrated multi-energy systems under multiple uncertainties[J]. Sustainable energy technologies and assessments, 2020, 37: 100602.
[17] MOKAREMIAN E, SHAYEGHI H, SEDAGHATI F, et al.A CVaR-robust-based multi-objective optimization model for energy hub considering uncertainty and E-fuel energy storage in energy and reserve markets[J]. IEEE access, 2021, 9: 109447-109464.
[18] HEIDARI A, MORTAZAVI S S, BANSAL R C.Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies[J]. Applied energy, 2020, 261: 114393.
[19] MANSOURI S A, AHMARINEJAD A, JAVADI M S, et al.Two-stage stochastic framework for energy hubs planning considering demand response programs[J]. Energy, 2020, 206: 118124.
[20] JADIDBONAB M, BABAEI E, MOHAMMADI -IVATLOO B.CVaR-constrained scheduling strategy for smart multi carrier energy hub considering demand response an compressed air energy storage[J]. Energy, 2019, 174: 1238-1250.
[21] MOKARAMIAN E, SHAYEGHI H, SEDAGHATI F, et al.Four-objective optimal scheduling of energy hub using a novel energy storage, considering reliability and risk indices[J]. Journal of energy storage, 2021, 40: 102731.
[22] 帅挽澜, 朱自伟, 李雪萌, 等. 考虑风电消纳的综合能源系统“源-网-荷-储”协同优化运行[J]. 电力系统保护与控制, 2021, 49(19): 18-26.
SHUAI W L, ZHU Z W, LI X M, et al.“Source-network-load-storage” coordinated optimization operation for an integrated energy system considering wind power consumption[J]. Power system protection and control, 2021, 49(19): 18-26.

基金

四川省科技计划(22QYCX0170)

PDF(2064 KB)

Accesses

Citation

Detail

段落导航
相关文章

/