固体蓄热器放热过程模拟分析与实验研究

胡自锋, 段振云, 徐耀祖, 商向东, 徐景久

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 71-77.

PDF(3451 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3451 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 71-77. DOI: 10.19912/j.0254-0096.tynxb.2022-0083

固体蓄热器放热过程模拟分析与实验研究

  • 胡自锋1, 段振云1, 徐耀祖2, 商向东1, 徐景久2
作者信息 +

SIMULATION ANALYSIS AND EXPERIMENTAL STUDY ON EXOTHERMIC PROCESS OF SOLID ACCUMULATOR

  • Hu Zifeng1, Duan Zhenyun1, Xu Yaozu2, Shang Xiangdong1, Xu Jingjiu2
Author information +
文章历史 +

摘要

为得到工程实际应用中固体蓄热器放热过程的流场分布及流动特性,以工程常用固体蓄热器的放热过程为研究对象,设计一种物理参数非定值的热流固耦合分析方法,通过数值模拟及其实验验证,得到该数值模拟方法的可行性。利用建立的数值模拟方法对固体蓄热器放热过程传热特性进行研究,结果表明:放热过程第1阶段,在低风速循环作用下,放热功率增幅较小,随着蓄热体温度升高,Nu数逐渐降低,并逐渐趋近于等表面热流密度的Nu数,表现出入口段的对流换热特性;放热过程第2阶段,由于风速提升,放热功率显著提高,随着第2阶段的进行,Nu数逐渐增加,对流换热特性较高。

Abstract

In order to obtain the flow field distribution and flow characteristics of the heat release process of solid accumulator in practical engineering application, the heat release process of solid accumulator commonly used in engineering is taken as the research object, a method of heat fluid-structure coupling analysis with non-constant physical parameters is designed, and its feasibility is verified by numerical simulation and experiment. Using numerical simulation method based on the exothermic process of regenerative heat exchanger with the solid heat transfer characteristics are studied. The results show that in the first stage of the exothermic process, under the effect of low wind speed loop, the heating power is small, as the regenerator temperature Nu number is gradually reduced, and gradually tend to Nu value of the surface heat flow density,showing convective heat transfer characteristics of entrances. In the second stage of the exothermic process, the exothermic power is significantly increased due to the increase of wind speed. With the progress of the second stage, Nu number gradually increases and the convective heat transfer characteristics is high.

关键词

蓄热 / 热分析 / 数值模拟 / 流固耦合 / 固体蓄热器

Key words

heat storage / thermal analysis / numerical simulation / fluid structure interaction / solid thermal accumulator

引用本文

导出引用
胡自锋, 段振云, 徐耀祖, 商向东, 徐景久. 固体蓄热器放热过程模拟分析与实验研究[J]. 太阳能学报. 2023, 44(6): 71-77 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0083
Hu Zifeng, Duan Zhenyun, Xu Yaozu, Shang Xiangdong, Xu Jingjiu. SIMULATION ANALYSIS AND EXPERIMENTAL STUDY ON EXOTHERMIC PROCESS OF SOLID ACCUMULATOR[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 71-77 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0083
中图分类号: TK513.5   

参考文献

[1] 杨小平, 杨晓西, 杨敏林, 等. 太阳能高温热发电蓄热技术研究进展[J]. 热能动力工程, 2011, 26(1): 1-6,118.
YANG X P, YANG X X, YANG M L, et al.Recent advances in the study of solar energy high-temperature heat power generation and accumulation technologies[J]. Journal of engineering for thermal energy and power, 2011, 26(1): 1-6,118.
[2] 王艳, 白凤武, 王志峰. 高温空气在蜂窝陶瓷体内蓄热特性研究[J]. 工程热物理学报, 2011, 32(9): 1541-1544.
WANG Y, BAI F W, WANG Z F.Investigated of heat transfer of high temperature air in honeycomb regenerator[J]. Journal of engineering thermophysics, 2011, 32(9): 1541-1544.
[3] DOERTE L, DOROTHEA L, MICHAEL F, et al.Test results of concrete thermal energy storage for parabolic trough power plants[J]. Journal of solar energy engineering, 2009, 131(4): 041007.
[4] RAINER T, DOERTE L, DIETER S W.Advanced thermal energy storage technology for parabolic trough[J]. Journal of solar energy engineering, 2004, 126(2): 794-800.
[5] 苏俊林, 张亚仁. 固体蓄热式电锅炉蓄热模拟及实验[J]. 热能动力工程, 2007(6): 638-641,689.
SU J L, ZHANG Y R.Heat-storage simulation and experiments of a solid heat-storage type electric boiler[J]. Journal of engineering for thermal energy and power, 2007(6): 638-641, 689.
[6] 徐耀祖, 商向东, 徐景久, 等. 固体蓄热装置蓄热过程模拟分析与实验研究[J]. 太阳能学报, 2021, 42(3): 401-405.
XU Y Z, SHANG X D, XU J J, et al.Simulation analysis and experimental study on thermal storage process of solid heat storage device[J]. Acta energiae solaris sinica, 2021, 42(3): 401-405.
[7] 徐耀祖, 商向东, 徐景久, 等. 基于MgO砖非定值物理特性的蓄热体热分析[J]. 太阳能学报, 2021, 42(9): 218-223.
XU Y Z, SHANG X D, XU J J, et al.Heat analysis of regenerator based on non-fixed value physical characteristics of MgO brick[J]. Acta energiae solaris sinica, 2021, 42(9): 218-223.
[8] 徐耀祖, 商向东, 单强, 等. 基于高倍率蓄热的固体蓄热器研究及应用分析[J]. 热能动力工程, 2020, 35(10): 72-78.
XU Y Z, SHANG X D, SHAN Q, et al.Research and application analysis of solid heat storage based on high rate heat storage[J]. Journal of engineering for thermal energy and power, 2020, 35(10): 72-78.
[9] 宋学官, 蔡林, 张华. ANSYS流固耦合分析与工程实例[M]. 北京: 中国水利水电出版社, 2012: 1-13.
SONG X G, CAI L, ZHANG H.ANSYS fluid-structure interaction analysis and engineering example[M]. Beijing: China Water and Power Press, 2012: 1-13.
[10] 孟繁超, 董素君, 江泓升, 等. 长时间流固耦合传热过程的快速算法[J]. 北京航空航天大学学报, 2017, 43(6): 1224-1230.
MENG F C, DONG S J, JIANG H S, et al.A fast algorithm for long-term fluid-solid conjugate heat transfer process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1224-1230.

PDF(3451 KB)

Accesses

Citation

Detail

段落导航
相关文章

/