大型风电机组输出功率与塔架载荷自抗扰控制

田德, 黄明月, 唐世泽, 邓远卓, 周强, 邓英

太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 466-472.

PDF(2091 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2091 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 466-472. DOI: 10.19912/j.0254-0096.tynxb.2022-0088

大型风电机组输出功率与塔架载荷自抗扰控制

  • 田德, 黄明月, 唐世泽, 邓远卓, 周强, 邓英
作者信息 +

OUTPUT POWER AND TOWER LOAD CONTROL OF LARGE-SCALE WIND TURBINES BASED ON ACTIVE DISTURBANCE REJECTION CONTROL

  • Tian De, Huang Mingyue, Tang Shize, Deng Yuanzhuo, Zhou Qiang, Deng Ying
Author information +
文章历史 +

摘要

风电机组运行在额定风速以上区域时,为保持输出功率稳定,降低塔架载荷,提出线性自抗扰变桨控制器。首先,基于自抗扰控制理论和风电机组动力学方程,建立离散线性状态误差反馈控制律及线性扩张状态观测器数学模型。其次,分别设计转速与塔架阻尼控制回路,并在Matlab中搭建变桨控制器模型;通过总扰动的整体辨识及补偿,改善机组控制性能。最后,利用高保真度风电机组模型在阶跃风、极端阵风、湍流风工况下仿真验证控制器性能。结果表明,该控制器在稳定功率输出的同时能进一步降低塔架载荷。

Abstract

When wind turbines operate in the region above the rated wind speed, the linear active disturbance rejection pitch controller is proposed to keep the output power stable and reduce tower loads. Firstly, based on the theory of active disturbance rejection control and dynamic equations of wind turbines, the discrete models of linear state error feedback and linear extended state observer are obtained. Secondly, the rotor speed control loop and the tower damping control loop are designed in Matlab to build the pitch controller model. Through the overall identification and compensation of total disturbances, the control performance can be improved. Finally, the high-fidelity wind turbine model is utilized to verify the performance of the controller under step wind, extreme gust, and turbulent wind conditions. Simulation results show that the proposed pitch controller can further reduce tower loads while stabilizing output power.

关键词

风电机组 / 功率控制 / 扰动抑制 / 塔架载荷 / 变桨控制 / 线性自抗扰控制

Key words

wind turbines / power control / disturbance rejection / tower loads / pitch control / linear active disturbance rejection control

引用本文

导出引用
田德, 黄明月, 唐世泽, 邓远卓, 周强, 邓英. 大型风电机组输出功率与塔架载荷自抗扰控制[J]. 太阳能学报. 2023, 44(5): 466-472 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0088
Tian De, Huang Mingyue, Tang Shize, Deng Yuanzhuo, Zhou Qiang, Deng Ying. OUTPUT POWER AND TOWER LOAD CONTROL OF LARGE-SCALE WIND TURBINES BASED ON ACTIVE DISTURBANCE REJECTION CONTROL[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 466-472 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0088
中图分类号: TM614   

参考文献

[1] RAHMAN M, ONG Z C, CHONG W T, et al.Wind turbine tower modeling and vibration control under different types of loads using ant colony optimized PID controller[J]. Arabian journal for science & engineering, 2019, 44: 707-720.
[2] PERRONE F.Offshore wind turbine tower fore-aft control: Trade-off fatigue load reduction and pitch activity[C]//2015 European Control Conference, Linz, Austria, 2015.
[3] 应有, 朱重喜, 杨帆, 等. 大型风电机组塔架主动阻尼控制技术研究[J]. 太阳能学报, 2015, 36(1): 54-60.
YING Y, ZHU C X, YANG F, et al.Development of active tower damping control on wind turbines[J]. Acta energiae solaris sinica, 2015, 36(1): 54-60.
[4] 邵连友, 廖礼, 郭洪涛, 等. 大型风电机组关键承载部件主动阻尼降载优化控制[J]. 科学技术与工程, 2020, 20(20): 8193-8201.
SHAO L Y, LIAO L, GUO H T, et al.Optimal control on active damping load reduction for key bearing components of large wind turbines[J]. Science technology and engineering, 2020, 20(20): 8193-8201.
[5] XIAO S, GENG H, YANG G.Non-linear pitch control of wind turbines for tower load reduction[J]. IET renewable power generation, 2014, 8(7): 786-794.
[6] 刘颖明, 朱江生, 姚兴佳, 等. 基于H2/H混合优化的大型风电机组变桨距鲁棒控制技术研究[J]. 太阳能学报, 2015, 36(3): 714-719.
LIU Y M, ZHU J S, YAO X J, et al.LMI-based H2/H robust pitch control technology for wind turbine[J]. Acta energiae solaris sinica, 2015, 36(3): 714-719.
[7] NAM Y, KIEN P T, LA Y H.Alleviating the tower mechanical load of multi-MW wind turbines with LQR control[J]. Journal of power electronics, 2013, 13(6): 1024-1031.
[8] GAO Z Q.Active disturbance rejection control from an enduring idea to an emerging technology[C]//2015 10th International Workshop on Robot Motion and Control (RoMoCo), Poznan, Poland, 2015.
[9] 马幼捷, 陶珑, 周雪松, 等. 结合自抗扰的风电系统电压环模糊自适应控制[J]. 太阳能学报, 2020, 41(12): 330-337.
MA Y J, TAO L, ZHOU X S, et al.Fuzzy adaptive control of voltage loop in wind power system combined with linear active disturbance rejection control[J]. Acta energiae solaris sinica, 2020, 41(12): 330-337.
[10] 杨惠, 骆姗, 孙向东, 等. 光伏储能双向DC-DC变换器的自抗扰控制方法研究[J]. 太阳能学报, 2018, 39(5): 1342-1350.
YANG H, LUO S, SUN X D, et al.Research on ADRC method for bidirectional DC-DC converter of solar energy storage system[J]. Acta energiae solaris sinica, 2018, 39(5): 1342-1350.
[11] 叶杭冶. 风力发电机组监测与控制[M]. 北京: 机械工业出版社, 2018: 24-25.
YE H Y.Wind turbine monitoring and control[M]. Beijing: China Machine Press, 2018, 24-25.
[12] JONKMAN J M, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5 MW reference wind turbine for offshore system development[R]. SAND2013-2569, 2009.
[13] PARK S S.A novel individual pitch control algorithm based on μ-synthesis for wind turbines[J]. Journal of mechanical science and technology, 2014, 28(4): 1509-1517.
[14] OH Y H, KIM K S, KIM H Y, et al.Control algorithm of a floating wind turbine for reduction of tower loads and power fluctuation[J]. International journal of precision engineering and manufacturing, 2015, 16(9): 2041-2048.
[15] 刘皓明, 唐俏俏, 苏媛媛, 等. 大型风电机组主动减振电气控制方法综述[J]. 电力科学与技术学报, 2016, 31(3): 182-194.
LIU H M, TANG Q Q, SU Y Y, et al.A survey on electrical control methods of large wind turbine active vibration reduction[J]. Journal of electric power science and technology, 2016, 31(3): 182-194.
[16] JIA C Z, WANG L M, MENG E L, et al.Combining LIDAR and LADRC for intelligent pitch control of wind turbines[J]. Renewable energy, 2021, 169: 1091-1105.
[17] BOSSANYI E.A. Wind turbine control for load reduction[J]. Wind energy, 2003, 6(3): 229-244.

基金

国家重点研发计划(2018YFB1501304)

PDF(2091 KB)

Accesses

Citation

Detail

段落导航
相关文章

/