基于面元法和FEM的海上浮式风力机叶片动力响应研究

陈迪郁, 刘利琴, 李焱, 张若瑜

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 374-382.

PDF(2602 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2602 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 374-382. DOI: 10.19912/j.0254-0096.tynxb.2022-0093

基于面元法和FEM的海上浮式风力机叶片动力响应研究

  • 陈迪郁1,2, 刘利琴3, 李焱3, 张若瑜3
作者信息 +

DYNAMIC RESPONSE ANALYSIS OF FLOATING OFFSHORE WIND TURBINES BLADES BASED ON PANEL METHOD AND FINITE ELEMENT METHOD

  • Chen Diyu, Liu Liqin3, Li Yan3, Zhang Ruoyu3
Author information +
文章历史 +

摘要

考虑水动-气动耦合模型,研究海上浮式风力机在风浪作用下动力响应的数值模拟方法。采用速度势面元法求解浮式风力机叶片压力分布以及时变气动载荷;建立NREL 5 MW风力机的有限元模型,通过瞬态分析得到叶片的变形和应力分布。计算表明,在展长方向,越靠近叶根处,应力值越大;在弦长方向上,越靠近前缘点应力值越大。和风载荷单独作用相比,波浪载荷导致浮式平台产生较大幅度的纵荡和纵摇运动,能量传递到上部风力机后导致叶片的变形和应力更大。

Abstract

Considering the hydro-aero coupled model, the numerical simulation algorithm on the dynamic response of floating offshore wind turbines (FOWTs) under environmental loading including wind and waves is established. The pressure distribution and time-varying aerodynamic loads on each blade are calculated with velocity-potential based panel method. Then the finite element model of NREL 5 MW wind turbine is established, and the blade deformation and stress distribution are obtained through the transient analysis. The results show that the von Mises stress is greater where the elements are closer to the root in the span direction, while the larger stress can be also observed near the leading edge in the chord direction. Comparing with the wind loads acting alone, the wave load will lead to the larger surge and pitch amplitudes. This amplified motion can transmit more energy to the upper wind turbines which will cause larger blade deformations and stresses.

关键词

气动载荷 / 海上风力机 / 动力响应 / 非定常面元法 / 有限元

Key words

aerodynamic loads / offshore wind turbines / dynamic response / unsteady panel method / finite element method

引用本文

导出引用
陈迪郁, 刘利琴, 李焱, 张若瑜. 基于面元法和FEM的海上浮式风力机叶片动力响应研究[J]. 太阳能学报. 2023, 44(6): 374-382 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0093
Chen Diyu, Liu Liqin, Li Yan, Zhang Ruoyu. DYNAMIC RESPONSE ANALYSIS OF FLOATING OFFSHORE WIND TURBINES BLADES BASED ON PANEL METHOD AND FINITE ELEMENT METHOD[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 374-382 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0093
中图分类号: P751    TK81   

参考文献

[1] KECSKEMETY K M, MCNAMARA J J.Influence of wake dynamics on the performance and aeroelasticity of wind turbines[J]. Renewable energy, 2016, 88: 333-345.
[2] 常卡, 王坤鹏. 风浪联合下导管架式风机结构疲劳特性研究[J]. 可再生能源, 2021, 39(12): 1617-1622.
CHANG K, WANG K P, Study on structural fatigue characteristics of jacket type wind turbine under combined wind and wave[J]. Renewable energy resources, 2021, 39(12): 1617-1622.
[3] 段磊, 李晔. 漂浮式海上大型风力机研究进展[J]. 中国科学: 物理学力学天文学, 2016, 46(12): 18-28.
DUAN L, LI Y.Progress of recent research and development in floating offshore wind turbines[J]. Scientia sinica(physica, mechanica & astronomica), 2016, 46(12): 18-28.
[4] SILVA L, CAZZOLATO B, SERGIIENKO N Y, et al.Efficient estimation of the nonlinear aerodynamic loads of floating offshore wind turbines under random waves and wind in frequency domain[J]. Journal of ocean engineering and marine energy, 2021: 1-17.
[5] LI Y W, PAIK K J, TAO X, et al.Dynamic overset CFD simulations of wind turbine aerodynamics[J]. Renewable energy, 2012, 37(1): 285-298.
[6] TRAN T T, KIM D H.A CFD study of coupled aerodynamic-hydrodynamic loads on a semisubmersible floating offshore wind turbine[J]. Wind energy, 2018, 21(1): 70-85.
[7] 李浩然, 胡志强, 王晋. 风浪联合作用下浮式风力机叶片结构强度分析[J]. 太阳能学报, 2018, 39(2): 406-411.
LI H R, HU Z Q, WANG J.Blade structural strength analysis of offshore floating wind turbine under wind and wave joint action[J]. Acta energiae solaris sinica, 2018, 39(2): 406-411.
[8] 刘传辉. 风洞风机叶片结构设计与强度分析[D]. 哈尔滨: 哈尔滨工程大学, 2017.
LIU C H.Structural design and strength analysis of fan blade in wind tunnel[D]. Harbin: Harbin Engineering University, 2017.
[9] GRECO L, TESTA C.Wind turbine unsteady aerodynamics and performance by a free-wake panel method[J]. Renewable energy, 2021, 164: 444-459.
[10] LI Q A, CAI C, TAKAO M, et al.Visualization of aerodynamic forces and flow field on a straight-bladed vertical axis wind turbine by wind tunnel experiments and panel method[J]. Energy, 2021, 225: 120274.
[11] NETZBAND S, SCHULZ C W, GOETTSCHE U, et al.A panel method for floating offshore wind turbine simulations with fully integrated aero- and hydrodynamic modelling in time domain[J]. Ship technology research, 2018, 65(3): 123-136.
[12] 刘利琴, 陈迪郁, 沈文君, 等. 基于非定常面元法的海上浮式风机气动性能研究[J]. 海洋工程, 2021, 39(5): 16-28.
LIU L Q, CHEN D Y, SHEN W J, et al.Study on aerodynamic characteristics of floating wind turbines with unsteady panel method[J]. The ocean engineering, 2021, 39(5): 16-28.
[13] JONKMAN J M, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5 MW reference wind turbine for offshore system development[R]. NREL/TP-500-38060, 2009.
[14] ROBERTSON A, JONKMAN J, MASCIOLA M, et al.Definition of the Semisubmersible Floating System for Phase II of OC4[R]. NREL/TP-5000-60601, 2014.
[15] 肖昌水. 海上浮式风机气动载荷及刚: 柔耦合动力响应研究[D]. 天津: 天津大学, 2018.
XIAO C S.Research on aerodynamic loads and rigid-flexible coupling dynamic response of offshore floating wind turbine[D]. Tianjin: Tianjin University, 2018.
[16] CHOU J S, CHIU C K, HUANG I K, et al.Failure analysis of wind turbine blade under critical wind loads[J]. Engineering failure analysis, 2013, 27: 99-118.
[17] 张建平, 张开华, 王明强, 等. 转速对风机叶片位移和应力的影响[J]. 机床与液压, 2020, 48(19): 156-160.
ZHANG J P, ZHANG K H, WANG M Q, et al.Influence of rotating speed on displacement and stress of wind turbine blade[J]. Machine tool & hydraulics, 2020, 48(19): 156-160.

基金

国家自然科学基金(51879190; 52001230); 天津市自然科学基金(21JCQNJC00330); 中国博士后科学基金(2021T140506)

PDF(2602 KB)

Accesses

Citation

Detail

段落导航
相关文章

/