火星表面薄膜型太阳能集热器设计及应用

张冰强, 贾阳, 杨淼, 张旺军

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 315-322.

PDF(2250 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2250 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 315-322. DOI: 10.19912/j.0254-0096.tynxb.2022-0095

火星表面薄膜型太阳能集热器设计及应用

  • 张冰强1,2, 贾阳1, 杨淼3, 张旺军1
作者信息 +

DESIGN AND APPLICATION OF THIN FILM SOLAR COLLECTORS ON MARS SURFACE

  • Zhang Bingqiang1,2, Jia Yang2, Yang Miao3, Zhang Wangjun1
Author information +
文章历史 +

摘要

为解决火星表面探测器热能短缺挑战,克服火星表面太阳能原位热利用中的性能和环境适应性困难,提出一种基于火面太阳能原位热利用的薄膜型太阳能集热器,热能收集采用高透明聚酰亚胺膜窗和选择性吸收涂层,储能采用3D打印高填充率相变储能装置,并利用半刚性赋形设计、热变形自适应、被动式泄压分别解决火星表面尘积、大温差热交变和星际飞行过程中快速泄压问题。仿真和试验表明,集热器最大光热转化效率为74.9%,日平均集热效率为32.5%~49.8%,单位面积集热量为1105.7~2381.5 Wh/(m2∙sol)(其中sol代表火星日,火星的一个恒星日的平均长度是24小时37分23秒),可适应火星严酷的应用环境。

Abstract

A thin-film solar collector based on in-situ thermal utilization of solar energy on the Martian surface is proposed in view of the thermal energy shortage of the Mars probe and the difficulties in performance and environmental adaptability of the in-situ thermal utilization. A highly transparent polyimide-film window and selective absorbing coating are adopted for heat collection, while a 3D-printed phase-change device with a high filling factor is adopted for energy storage. The semi-rigid forming design, adaptation to the thermal deformation, and passive decompression are also exploited to solve the problems of dust accumulation on the Martian surface, large thermal strain caused by varying temperatures and rapid decompression during the interstellar flight. Simulations and experiments demonstrate that the solar collector can adapt to the harsh conditions on Mars with a maximum photothermal conversion efficiency of 74.9%, an average daily heat-collection efficiency of 32.5%-49.8%, and a heat collection per unit area of 1105.7-2381.5 Wh/(m2∙sol).

关键词

太阳能 / 太阳能集热器 / 火星车 / 火星 / 热控

Key words

solar energy / solar collector / rover / Mars / thermal control

引用本文

导出引用
张冰强, 贾阳, 杨淼, 张旺军. 火星表面薄膜型太阳能集热器设计及应用[J]. 太阳能学报. 2023, 44(6): 315-322 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0095
Zhang Bingqiang, Jia Yang, Yang Miao, Zhang Wangjun. DESIGN AND APPLICATION OF THIN FILM SOLAR COLLECTORS ON MARS SURFACE[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 315-322 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0095
中图分类号: V476.4   

参考文献

[1] NOVAK K S, PHILLIPS C J, BIRUR G C, et al.Development of a thermal control architecture for the mars exploration rovers[C]//20th Symposium on Space Nuclear Power and Propulsion, Albuquerque, New Mexico, USA, 2003.
[2] BHANDARI P, BIRUR G, PAUKEN M, et al.Mars science laboratory thermal control architecture[C]//35th International Conference on Environmental Systems, Rome, Italy, 2005.
[3] 张昕宇, 李鹏, 何涛, 等. 中国太阳能中温集热技术进展及应用[J]. 太阳能学报, 2019, 40(6): 1494-1502.
ZHANG X Y, LI P, HE T, et al.Development situation of medium temperature solar thermal technology in china[J]. Acta energiae solaris sinica, 2019, 40(6): 1494-1502.
[4] 王登甲, 王晓文, 刘艳峰, 等. 平板集热器传热模型及热性能研究进展[J]. 建筑热能通风空调, 2018, 37(12): 52-59.
WANG D J, WANG X W, LIU Y F, et al.Research progress in heat transfer model and thermal performance of flat-plate solar collector[J]. Building energy & environment, 2018, 37(12): 52-59.
[5] 杨鲁伟, 李明, 高文峰, 等. 不同吸热涂层平板集热器的热性能衰减研究[J]. 太阳能学报, 2020, 41(3): 248-254.
YANG L W, LI M, GAO W F, et al.Research on attenuation of thermal performance of flat-plate solar collectors with different heat-absorbing coatings[J]. Acta energiae solaris sinica, 2020, 41(3): 248-254.
[6] 王敏, 李博佳, 徐伟, 等. 大气降尘及降水对平板集热器盖板透过率[J].太阳能学报, 2018, 39(11): 3053-3059.
WANG M, LI B J, XU W, et al.Experimental study on effect of dustfall and rainfall to cover transmittance of flat-plate solar collectors[J]. Acta energiae solaris sinica, 2018, 39(11): 3053-3059.
[7] HELIOVIS. Inflatable solar collector[EB/OL].https://heliovis.com/technology/.
[8] DAKHOUL Y M, SOMERS R E, HAYNES R D.A conceptual design for a space-based solar water heater[J]. Solar energy, 1990, 44(3): 161-171.
[9] BADESCUA V, POPESCUB G, FEIDT M.Design and optimisation of a combination solar collector-thermal engine operating on Mars[J]. Renewable energy, 2000, 21(1): 1-22.
[10] 艾素芬, 向艳超, 雷尧飞, 等. 火星车低密度纳米气凝胶隔热材料制备及性能研究[J]. 深空探测学报, 2020, 7(5): 466-473.
AI S F, XIANG Y C, LEI Y F, et al.Research development of biomass conversion technology preparation and characterization of ultra-low density nano-aerogel insulation materials for mars rover[J]. Journal of deep space exploration, 2020, 7(5): 466-473.
[11] NASA SP-8020, Surface models of mars[S].
[12] APPELBAUM J, LANDISG A. Solar radiation on mars update1991[R]. NASA technical memorandum 105216, 1991.
[13] 张鹤飞. 太阳能热利用原理与计算机模拟[M]. 西安: 西北工业大学出版社, 2004: 78-117.
ZHANG HF. principles and computer simulation of solar energy thermal utilization[M]. Xi’an: Northwestern polytechnicol University Press, 2004: 78-117.
[14] GB/T6424—2007, 平板型太阳集热器技术条件[S].
GB/T6424—2007, Technical specifications for flat plate solar collectors[S].
[15] RODRÍGUEZ-HIDALGO M C, RODRÍGUEZ-AUMENTE P A, LECUONA A, et al. Flat plate thermal solar collector efficiency: transient behavior under working conditions.Part II: model application and design contributions[J]. Applied thermal engineering, 2011, 31(14/15): 2385-2393.
[16] 王敏, 何涛, 李博佳, 等. 太阳模拟器人造冷天空的模型研究及其应用[J]. 太阳能学报, 2016, 37(4): 905-911.
WANG M, HE T, LI B J, et al.Modeling and application of artificial sky for solar simulator[J]. Acta energiae solaris sinica, 2016, 37(4): 905-911.

PDF(2250 KB)

Accesses

Citation

Detail

段落导航
相关文章

/