基于XCT的气体扩散层传输特性孔尺度模拟

张恒, 詹志刚, 陈奔, 隋邦杰, 潘牧

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 99-105.

PDF(2482 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2482 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 99-105. DOI: 10.19912/j.0254-0096.tynxb.2022-0096

基于XCT的气体扩散层传输特性孔尺度模拟

  • 张恒1,2, 詹志刚2, 陈奔3, 隋邦杰3, 潘牧2
作者信息 +

PORE-SCALE SIMULATION OF GAS DIFFUSION LAYER TRANSPORT CHARACTERICS BASED ON XCT

  • Zhang Heng1,2, Zhan Zhigang2, Chen Ben3, Sui Pangchieh3, Pan Mu2
Author information +
文章历史 +

摘要

为了探究质子交换膜燃料电池气体扩散层中孔隙率对各向异性传输特性的影响,先利用X射线计算机断层扫描(XCT)可视化技术方法对Freudenberg H2315 GDL气体扩散层进行三维微观结构重构,随后利用孔尺度模型分别研究了气体有效扩散率、曲度、有效电导率、有效热导率与孔隙率的关系,利用格子-玻尔兹曼模型研究液态水渗透率在厚度方向和平面内方向与孔隙率的关系,以及液态水饱和度和毛细压强的关系。结果表明:孔隙率对传输特性有显著的影响,Freudenberg H2315 GDL气体扩散层表现出明显的各向同性。

Abstract

To investigate the effect of porosity on the anisotropic transport properties in the gas diffusion layer of proton exchange membrane fuel cells (PEMFC), the 3D microstructure of the Freudenberg H2315 gas diffusion layer is reconstructed firstly by using X-ray computed tomography (XCT) visualization technology. Then, the relationship between the gas effective diffusivity, tortuosity, effective electrical conductivity, effective thermal conductivity and porosity are studied by using the pore-scale model. The relationship between liquid water permeability in the through-plane and in-plane and porosity and the relationship between liquid water saturation versus capillary pressure are solved by using the lattice-Boltzmann model. The results show that the porosity has a significant effect on the transport properties, and the Freudenberg H2315 gas diffusion layer exhibits obvious isotropy.

关键词

质子交换膜燃料电池 / 传输特性 / 微观重构 / 气体扩散层 / X射线计算机断层扫描 / 孔尺度模型

Key words

proton exchange membrane fuel cells / transport properties / microstructure / gas diffusion layer / XCT / pore scale model

引用本文

导出引用
张恒, 詹志刚, 陈奔, 隋邦杰, 潘牧. 基于XCT的气体扩散层传输特性孔尺度模拟[J]. 太阳能学报. 2023, 44(6): 99-105 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0096
Zhang Heng, Zhan Zhigang, Chen Ben, Sui Pangchieh, Pan Mu. PORE-SCALE SIMULATION OF GAS DIFFUSION LAYER TRANSPORT CHARACTERICS BASED ON XCT[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 99-105 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0096
中图分类号: TM911.4   

参考文献

[1] YANG Y G, ZHOU X Y, LI B, et al.Recent progress of the gas diffusion layer in proton exchange membrane fuel cells: material and structure designs of microporous layer[J]. International journal of hydrogen energy, 2021, 46(5): 4259-4282.
[2] XIONG K N, WU W, WANG S F, et al.Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: a review[J]. Applied energy, 2021, 301: 117443.
[3] MITZEL J, ZHANG Q, GAZDZICKI P, et al.Review on mechanisms and recovery procedures for reversible performance losses in polymer electrolyte membrane fuel cells[J]. Journal of power sources, 2021, 488: 229375.
[4] MAJLAN E H, ROHENDI D, DAUD W R W, et al. Electrode for proton exchange membrane fuel cells: a review[J]. Renewable and sustainable energy reviews, 2018, 89: 117-134.
[5] ATKINSON R W, GARSANY Y, GOULD B D, et al.The role of compressive stress on gas diffusion media morphology and fuel cell performance[J]. ACS applied energy materials, 2017, 1(1): 191-201.
[6] FU Y L, ZHANG B, ZHU X, et al.Pore-scale modeling of oxygen transport in the catalyst layer of air-breathing cathode in membraneless microfluidic fuel cells[J]. Applied energy, 2020, 277: 115536.
[7] FRONING D, DRAKSELOVÁ M, TOCHÁČKOVÁ A, et al. Anisotropic properties of gas transport in non-woven gas diffusion layers of polymer electrolyte fuel cells[J]. Journal of power sources, 2020, 452: 227828.
[8] SIMAAFROOKHTEH S, SHAKERI M, BANIASSADI M, et al.Microstructure reconstruction and characterization of the porous GDLs for PEMFC based on fibers orientation distribution[J]. Fuel cells, 2018, 18(2): 160-172.
[9] ZHU L J, ZHANG H, XIAO L S, et al.Pore-scale modeling of gas diffusion layers: effects of compression on transport properties[J]. Journal of power sources, 2021, 496: 229822.
[10] WANG S X, WANG Y L.Investigation of the through-plane effective oxygen diffusivity in the porous media of PEM fuel cells: effects of the pore size distribution and water saturation distribution[J]. International journal of heat and mass transfer, 2016, 98: 541-549.
[11] SIMAAFROOKHTEH S, TAHERIAN R, SHAKERI M.Stochastic microstructure reconstruction of a binder/carbon fiber/expanded graphite carbon fiber paper for PEMFCs applications: mass transport and conductivity properties[J]. Journal of the Electrochemical Society, 2019, 166(7): 3287-3299.
[12] CHUANG P Y A, RAHMAN M A, MOJICA F, et al. The interactive effect of heat and mass transport on water condensation in the gas diffusion layer of a proton exchange membrane fuel cell[J]. Journal of power sources, 2020, 480: 229121.
[13] CHEN T, LIU S H, ZHANG J W, et al.Study on the characteristics of GDL with different PTFE content and its effect on the performance of PEMFC[J]. International journal of heat and mass transfer, 2019, 128: 1168-1174.
[14] DAINO M M, KANDLIKAR S G.3D phase-differentiated GDL microstructure generation with binder and PTFE distributions[J]. International journal of hydrogen energy, 2012, 37(6): 5180-5189.
[15] JAMES J P,CHOI H W,PHAROAH J G.X-ray computed tomography reconstruction and analysis of polymer electrolyte membrane fuel cell porous transport layers[J]. International journal of hydrogen energy, 2012, 37(23): 18216-18230.
[16] LI M, BEVILACQUA N,ZHU L J, et al.Mesoscopic modeling and characterization of the porous electrodes for vanadium redox flow batteries[J]. Journal of energy storage, 2020, 32: 101782.
[17] ZENYUK I V, PARKINSON D Y, CONNOLLY L G, et al.Gas-diffusion-layer structural properties under compression via X-ray tomography[J]. Journal of power sources, 2016, 328: 364-376.
[18] NIU X D, MUNEKATA T, HYODO S A, et al.An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model[J]. Journal of power sources, 2007, 172(2): 542-552.
[19] GALLAGHER K G, DARLING R M, PATTERSON T W, et al.Capillary pressure saturation relations for pem fuel cell gas diffusion layers[J]. Journal of the Electrochemical Society, 2008, 155(11): B1225.
[20] JINUNTUYA F, WHITELEY M, CHEN R, et al.The effects of gas diffusion layers structure on water transportation using X-ray computed tomography based Lattice Boltzmann method[J]. Journal of power sources, 2018, 378: 53-65.
[21] 李政翰, 涂正凯. 质子交换膜燃料电池仿真模型研究进展[J]. 化工进展, 2022, 41(10): 5272-5296.
LI Z H, TU Z K.Research progress of simulation models of proton exchange membrane fuel cell[J]. Chemical industry and engineering progress, 2022, 41(10): 5272-5296.
[22] 张智明,沈哲民, 商亚鹏, 等. 基于GDL非一致孔隙率的PEMFC模拟仿真[J]. 华南理工大学学报(自然科学版), 2017, 45(8): 35-41.
ZHANG Z M, SHEN Z M, SHANG Y P, et al.Simulation of PEMFC based on non-uniform porosity of GDL[J]. Journal of South China University of Technology (natural science edition), 2017, 45(8): 35-41.
[23] NISHIYAMA N, YOKOYAMA T.Permeability of porous media: role of the critical pore size[J]. Journal of geophysical research: solid earth, 2017, 122(9):6955-6971.
[24] CAI J C, YU B M.A discussion of the effect of tortuosity on the capillary imbibition in porous media[J]. Transport in porous media, 2011, 89(2): 251-263.

基金

国家自然科学基金(22179103; 52176200); 佛山仙湖实验室开放基金重点项目(XHD2020-002)

PDF(2482 KB)

Accesses

Citation

Detail

段落导航
相关文章

/