海上风电单桩部分胶结抛石体防冲刷措施模型试验研究

王百智, 王卫, 闫俊义, 陈松贵, 金峰, 江朝华

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 383-389.

PDF(4887 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4887 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 383-389. DOI: 10.19912/j.0254-0096.tynxb.2022-0109

海上风电单桩部分胶结抛石体防冲刷措施模型试验研究

  • 王百智1, 王卫2, 闫俊义3, 陈松贵1, 金峰4, 江朝华5
作者信息 +

MODEL INVESTIGATION OF OFFSHORE WIND POWER MONOPILE SCOUR PROTECTION MEASURES BASED ON PARTIALLY CEMENTED RIPRAP UNDERWATER

  • Wang Baizhi1, Wang Wei2, Yan Junyi3, Cheng Songgui1, Jin Feng4, Jiang Chaohua5
Author information +
文章历史 +

摘要

基于水下自护砂浆自流可控灌浆技术,利用高性能砂浆将单桩基础周围抛石胶结固化成胶结抛石体防护结构,并通过模型比尺为1∶13的大型波流水槽冲刷试验,研究桩周胶结抛石体防护结构在极端波流条件下的防护效果。试验结果表明,在重现期50和100 a极端波流条件下,水下部分胶结抛石体防护结构均能保持整体稳定,并有效减少单桩周围冲刷,桩周最大冲刷分别深度减少了82%和81%,冲刷范围减少了70%和80%。试验结果证明了部分胶结抛石体防护结构对海上风电单桩基础的稳定性起到良好的防冲刷保护作用。

Abstract

Based on self-flow controllable grouting technology of underwater self-protecting mortar, use high-performance mortar to cement and solidify the riprap around the monopile foundation into an underwater cemented riprap protective structure. Through the scour test of a large wave current flume (model scale 1∶13), the protective effect of underwater partially cemented rockfill protective structure under extreme wave and current conditions are researched. The test results shows that under the extreme wave with retuen period of 50 and 100 a, the underwater protective structure of partially cemented riprap can maintain overall stability. It can effectively reduce the scour around monopile. The maximum scour depth and scour range around a pile can be reduced by 82% and 81% , respectively, the scour range can be reduced by 70% and 80%. The test results prove that the partially cemented riprap protective structure has a good anti-scouring protection effect on the stability of the offshore wind power monopile foundation.

关键词

海上风电 / 冲刷 / 冲刷防护 / 单桩 / 水下胶结抛石体

Key words

offshore wind power / scour / scour protection / monopile / cemented riprap underwater

引用本文

导出引用
王百智, 王卫, 闫俊义, 陈松贵, 金峰, 江朝华. 海上风电单桩部分胶结抛石体防冲刷措施模型试验研究[J]. 太阳能学报. 2023, 44(6): 383-389 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0109
Wang Baizhi, Wang Wei, Yan Junyi, Cheng Songgui, Jin Feng, Jiang Chaohua. MODEL INVESTIGATION OF OFFSHORE WIND POWER MONOPILE SCOUR PROTECTION MEASURES BASED ON PARTIALLY CEMENTED RIPRAP UNDERWATER[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 383-389 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0109
中图分类号: TV36   

参考文献

[1] 刘桢, 俞炅旻, 黄德财, 等. 海上风电发展研究[J]. 船舶工程, 2020, 42(8): 20-25.
LIU Z, YU J M, HUANG D C, et al.Research on offshore wind power development[J]. Ship engineering, 2020, 42(8): 20-25.
[2] SUNDAY K, BRENNAN F.A review of offshore wind monopiles structural design achievements and challenges[J]. Ocean engineering, 2021, 235: 109409
[3] 祁一鸣, 陆培东, 曾成杰, 等. 海上风电桩基局部冲刷试验研究[J]. 水利水运工程学报, 2015(6): 60-67.
QI Y M, LU P D, ZENG C J, et al.Experimental studies on local scour of offshore wind turbine pile[J]. Hydro-science and engineering, 2015(6): 60-67.
[4] 杨奇, 刘红军, 潘光来, 等. 海上风电单桩基础局部冲刷研究进展[J]. 泥沙研究, 2019, 44(5): 74-81.
YANG Q, LIU H J, PAN G L, et al.Study progress on local scour around monopile of offshore wind farm[J] . Journal of sediment research, 2019, 44(5): 74-81.
[5] GUAN D W, CHIEW Y, MELVILLE B W, ZHENG J H.Current-induced scour at monopile foundations subjected to lateral vibrations[J]. Coastal engineering, 2019, 144: 15-21.
[6] TAFAROJNORUZ A, GAUDIO R, CALOMINO F.Evaluation of flow-altering countermeasures against bridge pier scour[J]. Journal of hydraulic engineering-ASCE, 2012, 138(3): 297-305.
[7] MONCADA-M A T, AGUIRRE-PE J, BOLIVAR J C, et al. Scour protection of circular bridge piers with collars and slots[J]. Journal of hydraulic research, 2009, 47(1): 119-126.
[8] WANG S Y, WEI K, SHEN Z H, et al.Experimental investigation of local scour protection for cylindrical bridge piers using anti-scour collars[J]. Water, 2019, 11(7), 1515.
[9] 魏凯, 王顺意, 裘放, 等. 海上风电单桩基础海流局部冲刷及防护试验研究[J]. 太阳能学报, 2021, 42(9): 338-343.
WEI K, WANG S Y, QIU F, et al.Experimental study on local scour and its protection of offshore wind turbine monopile under ocean current[J]. Acta energiae solaris sinica, 2021, 42(9): 338-343.
[10] AKIB S, MAMAT N L, BASSER H, et al.Reducing local scouring at bridge piles using collars and geobags[J]. Scientific world journal, 2014, 2014: 1-7. DOI:10.1155/2014/128635.
[11] ZARRATI A R, CHAMANI M R, SHAFAIE A et al. Scour countermeasures for cylindrical piers using riprap and combination of collar and riprap[J]. International Journal of sediment research, 2010, 25(3): 313-321.
[12] 陈松贵, 金峰, 周虎, 等. 水下堆石混凝土可行性研究[J]. 水力发电学报, 2012, 31(6): 214-217.
CHEN S G, JIN F, ZHOU H, et al.Feasibility study of underwater rock-filled concrete[J]. Journal of hydroelectric engineering, 2012, 31(6): 214-217.
[13] 金峰, 周虎, 李玲玉, 等. 堆石混凝土系列技术在西部水电工程中的应用[J]. 水电与抽水蓄能, 2021, 7(1): 16-22.
JIN F, ZHOU H, LI L Y, et al.Application of innovative technologies based on rock-filled concrete in hydropower projects in western China[J]. Hydropower and pumped storage, 2021, 7(1): 16-22.
[14] NASR A A, CHEN S G, JIN F.Washout resistance of self-protected underwater concrete in freshwater and seawater[J]. Construction and building materials, 2021, 289: 123186.
[15] Richard Whitrhouse.Scour at marine structures: a manual for practical applications[M]. Reston: ASCE Press, 1998.
[16] 陈国平, 胡智农, 王红. 抛石防波堤人工护面块体强度模拟研究[J]. 海洋工程, 1995, 13(1): 28-36.
CHEN G P, HU Z N, WANG H.The simulation of the strength of model armour unit on rubble-mound breakwaters[J]. The ocean engineering, 1995, 13(1): 28-36.
[17] 张瑞瑾, 谢鉴衡, 陈文彪. 河流动力学[M]. 北京: 中国工业出版社, 1961.
ZHANG R J, XIE J H, CHEN W B.River dynamics[M]. Beijing: China Industrial Press, 1961.
[18] SUMER B M, OSLASH,FREDS R, et al.Scour around vertical pile in waves[J]. Journal of waterway, port,coastal, and ocean engineering, 1992, 118(1): 15-31.
[19] PETERSEN T U, SUMER B M, FREDSOE J, et al.Edge scour at scour protections around piles in the marine environment-Laboratory and field investigation[J]. Coastal engineering, 2015, 106: 42-72.

基金

中国长江三峡集团有限公司科研项目(202003347); 水沙科学与水利水电工程国家重点实验室开放研究基金资助课题(sklhse-2020-C-06); 国家自然科学基金青年项目(52001149); 国家自然科学基金重点项目(52039005); 国家自然科学基金国际(地区)合作与交流项目(51861165102); 中央级公益性科研院所基本科研业务费专项基金(TKS20200204; TKS20210102; TKS20210110)

PDF(4887 KB)

Accesses

Citation

Detail

段落导航
相关文章

/