冷热电储一体化综合能源系统优化研究

汪德成, 李妍, 张群, 王思茗, 许波, 陈振乾

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 130-136.

PDF(1920 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1920 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 130-136. DOI: 10.19912/j.0254-0096.tynxb.2022-0117

冷热电储一体化综合能源系统优化研究

  • 汪德成1, 李妍1, 张群1, 王思茗2, 许波2, 陈振乾2
作者信息 +

RESEARCH ON OPTIMIZATION OF COOLING, HEATING, ELECTRICITY AND STORAGE MULTI-ENERGY COUPLING SYSTEM

  • Wang Decheng1, Li Yan1, Zhang Qun1, Wang Siming2, Xu Bo2, Chen Zhenqian2
Author information +
文章历史 +

摘要

近年来分布式综合能源站作为助力双碳目标实现的一条有效路径得到广泛应用,由于其在负荷端就近利用多种可再生能源,集产能、储能、供能于一体,应进行供需双侧的精准分析和优化调度以保证实际运行的节能效果。该文选取泰州市某园区级综合能源站为研究对象,根据用能建筑的全年负荷预测结果提出系统配置方案,然后基于TRNSYS仿真平台搭建系统模型并对多台机组变频控制策略进行分析,同时采用TRNSYS与GenOpt相结合的方法对冷热电储耦合系统能效影响因素进行研究,调用Hooke-Jeeves算法对水泵和光伏组件主要参数进行同步优化。研究结果表明:在相同初投资情况下,优化后的系统年能耗降低3%,每年可节省运行费用178490元。

Abstract

In recent years, distributed integrated energy station has been widely used as an effective way to help China achieve the ‘dual carbon’ goal. As a complex system that integrates energy production, storage and supply, integrated energy station utilizes a variety of renewable energy sources close to the load side. Accurate analysis and optimal scheduling on both sides of supply and demand should be carried out to ensure energy saving effect in actual operation. This article takes an integrated energy station at the park level in Taizhou as the research object, and puts forward a system configuration scheme based on the results of the annual load prediction of the buildings. Then, the system model is built based on TRNSYS simulation platform, and the frequency conversion control strategies of multiple units are analyzed. The influence factors of the energy efficiency of the cooling, heating, electricity and storage multi-energy coupling system are studied by combining TRNSYS with GenOpt. Hooke-Jeeves algorithm is used to synchronously optimize the main parameters of the water pump and photovoltaic panel. The results show that under the same initial investment, the annual energy consumption of the optimized system is reduced by 3%, and the operating cost of 178490 yuan can be saved annually.

关键词

综合能源站 / 光伏组件 / 系统仿真 / 优化策略 / TRNSYS

Key words

integrated energy station / PV modules / system simulation / optimization strategy / TRNSYS

引用本文

导出引用
汪德成, 李妍, 张群, 王思茗, 许波, 陈振乾. 冷热电储一体化综合能源系统优化研究[J]. 太阳能学报. 2023, 44(6): 130-136 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0117
Wang Decheng, Li Yan, Zhang Qun, Wang Siming, Xu Bo, Chen Zhenqian. RESEARCH ON OPTIMIZATION OF COOLING, HEATING, ELECTRICITY AND STORAGE MULTI-ENERGY COUPLING SYSTEM[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 130-136 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0117
中图分类号: TK519   

参考文献

[1] ZHAO J, CHEN L, WANG Y N, et al.A review of system modeling, assessment and operational optimization for integrated energy systems[J]. Science China(information sciences), 2021, 64(9): 5-27.
[2] LI J Y, LI D X, ZHENG Y F, et al.Unified modeling of regionally integrated energy system and application to optimization[J]. International journal of electrical power & energy systems, 2022, 134: 107377.
[3] 赵海彭, 苗世洪, 李超, 等. 考虑冷热电需求耦合响应特性的园区综合能源系统优化运行策略研究[J]. 中国电机工程学报, 2022, 42(2): 573-589.
ZHAO H P, MIAO S H, LI C, et al.Research on optimal operation strategy for park-level integrated energy system considering cold-heat-electric demand coupling response characteristics[J]. Proceedings of the CSEE, 2022, 42(2): 573-589.
[4] 姜子卿, 郝然, 艾芊, 等. 基于冷热电多能互补的工业园区互动机制研究[J]. 电力自动化设备, 2017, 37(6): 260-267.
JIANG Z Q, HAO R, AI Q, et al.Interaction mechanism of industrial park based on multi-energy complementation[J]. Electric power automation equipment, 2017, 37(6): 260-267.
[5] 权超,董晓峰,姜彤. 基于CCHP耦合的电力、天然气区域综合能源系统优化规划[J]. 电网技术, 2018, 42(8): 2456-2466.
QUAN C, DONG X F, JIANG T.Optimization planning of integrated electricity-gas community energy system based on coupled CCHP[J]. Power system technology, 2018, 42(8): 2456-2466.
[6] 郝然, 艾芊, 朱宇超, 等. 基于能源集线器的区域综合能源系统分层优化调度[J]. 电力自动化设备, 2017, 37(6): 171-178.
HAO R, AI Q, ZHU Y C, et al.Hierarchical optimal dispatch based on energy hub for regional integrated energy system[J]. Electric power automation equipment, 2017, 37(6): 171-178.
[7] MAXIMOV S A, MEHMOOD S, FRIEDRICH D.Multi-objective optimisation of a solar district heating network with seasonal storage for conditions in cities of southern Chile[J]. Sustainable cities and society, 2021, 73: 103087.
[8] 杨少刚. 基于TRNSYS地埋管地源热泵变流量系统仿真研究[D]. 济南: 山东建筑大学, 2016.
YANG S G.The simulation study of ground-source heat pump variable flow rate system based on TRNSYS[D]. Jinan: Shandong Jianzhu University, 2016.
[9] 林秀军, 吴延奎. 中央空调冷水机组运行模式对系统综合能耗的影响与分析[J]. 建筑节能, 2018, 46(10): 33-36, 44.
LIN X J, WU Y K.Analysis on comprehensive energy consumption of air conditioning system by different operating mode[J]. Building energy efficiency, 2018, 46(10): 33-36, 44.
[10] ZHANG S R, TANG Y L.Optimal schedule of grid-connected residential PV generation systems with battery storages under time-of-use and step tariffs[J]. Journal of energy storage, 2019, 23: 175-182.
[11] 王春林, 郭放, 朱永利, 等. 大规模太阳能跨季节土壤储热系统设计优化[J]. 太阳能学报, 2021, 42(4): 320-327.
WANG C L, GUO F, ZHU Y L, et al.Design and optimization of large-scale seasonal borehole thermal energy storage system for solar energy[J]. Acta energiae solaris sinica, 2021, 42(04): 320-327.

基金

国网江苏电力设计咨询有限公司科技项目,综合能源站冷-热-电-储系统优化设计及运行技术研究(JE202102)

PDF(1920 KB)

Accesses

Citation

Detail

段落导航
相关文章

/