考虑桩基础柔性的固定式海上风力机调谐液柱阻尼器振动控制研究

韩东东, 王文华, 李昕, 宿晓辉

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 398-405.

PDF(1907 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1907 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 398-405. DOI: 10.19912/j.0254-0096.tynxb.2022-0125

考虑桩基础柔性的固定式海上风力机调谐液柱阻尼器振动控制研究

  • 韩东东1,2, 王文华1,2, 李昕1,2, 宿晓辉1
作者信息 +

RESEARCH OF VIBRATION CONTROL OF BOTTOM-FIXED OFFSHORE WIND TURBINES USING TUNED LIQUID COLUMN DAMPER WITH PILE FOUNDATION FLEXIBILITIES

  • Han Dongdong1,2, Wang Wenhua1,2, Li Xin1,2, Su Xiaohui1
Author information +
文章历史 +

摘要

采用线性耦合弹簧模拟风力机桩基础柔性,基于时域整体耦合分析方法,建立考虑桩基础柔性的海上风力机-调谐液柱阻尼器(TLCD)的耦合数值仿真模型,开展风浪联合作用下固定式海上风力机结构振动控制研究,探讨TLCD对于减振效果的影响,并结合频域响应揭示了TLCD的减振机理。研究表明,所设计TLCD通过调谐支撑结构一阶模态有效降低了固定式海上风力机结构自由衰减时程和耦合运动响应。与此同时,验证了不同设计工况下海上风力结构减振效果的差异,以及环境荷载与海上风力结构耦合效应对于TLCD减振效果的影响,进一步,依据海上风力机结构耦合运动响应控制率对TLCD的适用性和有效性进行了评价。

Abstract

The linear coupled spring is used to simulate the flexibilities of wind turbine pile foundations. Based on the fully coupled analysis theories in the time domain and linearized spring of pile foundation at the mudline, the coupled numerical model of the offshore wind turbine(OWT) with a tuned liquid column damper(TLCD) is established. Then, the vibration control of bottom-fixed OWT under combined winds and waves are carried out. The mitigation effects of TLCD on the bottom-fixed OWT are discussed, and the vibration reduction mechanisms are revealed according to the reduced responses in the frequency domain. It is shown that the free decayed motions and coupled structural responses of OWT are effectively alleviated by the designed TLCD with the designated support structural first frequency. Meanwhile, the differences in the mitigation effects among the selected load cases are verified, and the influence of interactions between the environmental loads and OWT responses are studied. Further, the applicability and effectiveness of the designed TLCD is evaluated based on the reductions of the OWT coupled responses.

关键词

海上风力机 / 动力响应 / 振动控制 / 调谐液柱阻尼器 / 整体耦合模型

Key words

offshore wind turbines / dynamic response / vibration control / tuned liquid column damper / fully coupled model

引用本文

导出引用
韩东东, 王文华, 李昕, 宿晓辉. 考虑桩基础柔性的固定式海上风力机调谐液柱阻尼器振动控制研究[J]. 太阳能学报. 2023, 44(6): 398-405 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0125
Han Dongdong, Wang Wenhua, Li Xin, Su Xiaohui. RESEARCH OF VIBRATION CONTROL OF BOTTOM-FIXED OFFSHORE WIND TURBINES USING TUNED LIQUID COLUMN DAMPER WITH PILE FOUNDATION FLEXIBILITIES[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 398-405 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0125
中图分类号: TK8   

参考文献

[1] LACKNER M A, ROTEA M A.Passive structural control of offshore wind turbines[J]. Wind energy, 2011, 14(3): 373-388.
[2] LACKNER M A, ROTEA M A.Structural control of floating wind turbines[J]. Mechatronics, 2011, 21(4): 704-719.
[3] LI J, ZHANG Z L, CHEN J B.Experimental study on vibration control of offshore wind turbines using a ball vibration absorber[J]. Energy and power engineering, 2012, 4(3): 153.
[4] SI Y L, KARIMI H R, GAO H J.Modelling and optimization of a passive structural control design for a spar-type floating wind turbine[J]. Engineering structures, 2014, 69: 168-182.
[5] SI Y L, KARIMI H R, GAO H J.Parameter tuning for nacelle-based passive structural control of a spar-type floating wind turbine[C]//Conference of the IEEE Industrial Electronics Society, Dallas, USA, 2014.
[6] 杨佳佳, 贺尔铭, 姚文旭, 等. 抑制海上浮式风力机振动的TMD限位策略研究[J]. 振动与冲击, 2020, 39(15): 18-24, 57.
YANG J J, HE E M, YAO W X, et al.TMD limited position strategy for vibration suppression of floating offshore wind turbines[J]. Journal of vibration and shock, 2020, 39(15): 18-24,57.
[7] 黄致谦, 丁勤卫, 李春. 三种漂浮式风力机调谐质量阻尼器稳定性控制研究[J]. 振动与冲击, 2019, 38(21): 112-119,147.
HUANG Z Q, DING Q W, LI C.TMD’S on stability control effect of three kinds of floating wind turbine[J]. Journal of vibration and shock, 2019, 38(21): 112-119, 147.
[8] 丁勤卫, 郝文星, 李春, 等. 漂浮式风力机结构动力学响应TMD控制及其参数优化研究[J]. 振动与冲击, 2018, 37(23): 69-78.
DING Q W, HAO W X, LI C, et al.TMD control and its parametric optimization of structure al dynamic response of afloating wind turbine[J]. Journal of vibration and shock, 2018, 37(23): 69-78.
[9] HEMMATI A, OTERKUS E, KHORASANCHI M.Vibration suppression of offshore wind turbine foundations using tuned liquid column dampers and tuned mass dampers[J]. Ocean engineering, 2019, 172: 286-295.
[10] COLWELL S, BASU B.Tuned liquid column dampers in offshore wind turbines for structural control[J]. Engineering structures, 2009, 31(2): 358-368.
[11] CHEN J B, LIU Y K, BAI X Y.Shaking table test and numerical analysis of offshore wind turbine tower systems controlled by TLCD[J]. Earthquake engineering and engineering vibration, 2015, 14(1): 55-75.
[12] BUCKLEY T, WATSON P, CAHILL P, et al.Mitigating the structural vibrations of wind turbines using tuned liquid column damper considering soil-structure interaction[J]. Renewable energy, 2018, 120: 322-341.
[13] HA M H, CHEONG C.Pitch motion mitigation of spar-type floating substructure for offshore wind turbine using multilayer tuned liquid damper[J]. Ocean engineering, 2016, 116: 157-164.
[14] ZHANG Z L, STAINO A, BASU B, et al.Performance evaluation of full-scale tuned liquid dampers(TLDs) for vibration control of large wind turbines using real-time hybrid testing[J]. Engineering structures, 2016, 126: 417-431.
[15] PARK S, GLADE M, LACKNER M A.Multi-objective optimization of orthogonal TLCDs for reducing fatigue and extreme loads of a floating offshore wind turbine[J]. Engineering structures, 2020, 209: 110260.
[16] JONKMAN J, MUSIAL W.Subtask 2 the offshore code comparison collaboration (OC3) IEA wind task 23 offshore wind technology and deployment[R]. NREL/TP-5000-4819, 2010.
[17] PASSON P.Memorandum derivation and description of the soil-pile-interaction models[R]. IEA-Annex XXIIII Subtask, 2006.
[18] BIR G.Blades and towers modal analysis code (BModes):verification of blade modal analysis capability[C]//The 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, USA, 2009: 5-8.
[19] GAO H, KWOK K, SAMALI B.Optimization of tuned liquid column dampers[J]. Engineering structures, 1997, 19(6): 476-486.
[20] IEC 61400-3, Wind turbines, part 3: design requirements for offshore wind turbines[S].
[21] FOLEY J T, GUTOWSKI T G.TurbSim: reliability-based wind turbine simulator[C]//IEEE International Symposium on Electronics and the Environment, San Francisco, USA, 2008: 19-22.
[22] KAIMAL J C, WYNGAARD J C, IZUMI Y, et al.Spectral characteristics of surface-layer turbulence[J]. Quarterly journal of the royal meteorological society, 1972, 98(417): 563-589.
[23] HARTOG D.Mechanical vibrations[M]. New York: Dover Publications, 1985.

基金

国家自然科学基金(51939002; 52001052); 广东省海洋经济发展(海洋六大产业)专项基金(粤自然资合[2020]016)

PDF(1907 KB)

Accesses

Citation

Detail

段落导航
相关文章

/