该文设计一种用于小型塔式太阳能电站的热管接收器。基于蒙特卡洛光线追迹(MCRT)算法和混合编程方法,开发光学仿真程序。详细研究单根热管表面热流密度时空分布规律和热管接收器表面能量动态分布规律,并分析接收器瞬时光学性能。研究结果表明单根热管表面热流密度具有强烈非均匀性。夏至日正午,吸热面中心单根热管吸收能量约为6.9 kW。春分日和夏至日时,接收器最大光学效率约为75%;冬至日最大光学效率约为61%。研究结果有助于进一步研究热管接收器的光热耦合机理。
Abstract
A heat pipe receiver is designed for a small tower solar power station in this article. Real-time optical simulation procedures are developed based on Monte Carlo ray tracing method and mixed programming method. The spatial and temporal distribution of hea flux on the surface of a single heat pipe and the dynamic distribution of energy on the surface of the heat pipe receiver are studied in detail. The real-time optical performance of the receiver is also analyzed. The results show that the solar flux on a single heat pipe exhibits a significant non-uniformity. On the summer solstice, the total energy absorbed by the heat pipe near the receiver center is approximately 6.9 kW. On the spring equinox and summer solstice, the maximum optical efficiency of the receiver is approximately 75%; whereas the value is only 61% on the winter solstice. The results are helpful to the further study of the solar-thermal mechanism of the heat pipe receiver.
关键词
塔式太阳能热发电 /
热管接收器 /
热流密度分布 /
光学性能 /
蒙特卡洛光线追迹法
Key words
solar power tower /
heat pipe receiver /
heat flux distribution /
optical performance /
Monte-Carlo ray tracing method
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] REDDY V S, KAUSHIK S C, RANJAN K R, et al.State-of-the-art of solar thermal power plants—a review[J]. Renewable & sustainable energy reviews, 2013, 27(6): 258-273.
[2] BESARATI S M, GOSWAMI D Y, STEFANAKOS E K.Optimal heliostat aiming strategy for uniform distribution of heat flux on the receiver of a solar power tower plant[J]. Energy conversion and management, 2014, 84: 234-243.
[3] LITWIN R Z, PACHECO J E.Receiver system: lessons learned from solar two[R]. SANDT 2002-0084, 2002.
[4] BUCK R, BRÄUNINGT, DENK T, et al. Solar-hybrid gas turbine-based power tower systems (REFOS)[J]. Journal of solar energy engineering, 2002, 124(1): 2-9.
[5] REILLY H E, KOLB G J.An evaluation of molten-salt power towers including results of the solar two project[R]. SAND2001-3674, 2001.
[6] 王建楠, 李鑫, 常春. 太阳能塔式热发电站熔融盐吸热器过热故障的影响因素分析[J]. 中国电机工程学报, 2010, 30(29): 107-114.
WANG J N, LI X, CHANG C.Analysis of the influence factors on the overheat of molten salt receiver in solar tower power plants[J]. Proceedings of the CSEE, 2010, 30(29): 107-114.
[7] SPEIDEL P J, KELLY B D, PRAIRIE M R, et al.Performance of the solar two central receiver power plant[C]//9th International Symposium on Solar Thermal Concentrating Technologies, Odeillo, France, 1998.
[8] BIENERT W B.The heat pipe and its application to solar receivers[J]. Electric power systems research, 1980, 3(1): 111-123.
[9] NAITO H, FUJIHARA T, HOSHINO T, et al.An experimental study of a solar receiver for JEM experiment program[C]//35th Intersociety Energy Conversion Engineering Conference and Exhibit (IECEC), Las Vegas, United States, 2000.
[10] 张红, 许辉, 白穜, 等. 高温太阳能热管接收器: CN101178265[P].2007-12-10.
ZHANG H, XU H, BAI T, et al. High temperature heat pipe solar power receiver: CN101178265[P].2007-12-10.
[11] 许辉, 张红, 丁莉, 等. 太阳辐射对高温热管接收器传热的影响[J]. 南京工业大学学报(自然科学版), 2009, 31(5): 91-95.
XU H, ZHANG H, DING L, et al.Effect of solar radiation on heat transfer of high temperature heat pipe solar power receiver[J]. Journal of Nanjing Tech University (natural science edition), 2009, 31(5): 91-95.
[12] LIAO Z R, FAGHRI A.Thermal analysis of a heat pipe solar central receiver for concentrated solar power tower[J]. Applied thermal engineering, 2016, 102: 952-960.
[13] CHU S Z, BAI F W, CUI Z Y, et al.Experimental study of a heat pipe pressurized air receiver[C]//AIP Conference Proceedings, Casablanca, Morocco, 2019.
[14] CHU S Z, BAI F W, CUI Z Y, et al.Experimental investigation on thermal performance of a heat pipe pressurized air receiver[J]. Applied thermal engineering, 2020, 165: 114551.
[15] COLLADO F J.One-point fitting of the flux density produced by a heliostat[J]. Solar energy, 2010, 84(4): 673-684.
基金
国家自然科学基金重点项目(51736006)