基于改进延迟分离涡方法的潮流能水轮机纵摇运动水动力分析

纪仁玮, 孙科, 张玉全, 赵梦晌, 朱仁庆

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 15-23.

PDF(3174 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3174 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 15-23. DOI: 10.19912/j.0254-0096.tynxb.2022-0132

基于改进延迟分离涡方法的潮流能水轮机纵摇运动水动力分析

  • 纪仁玮1, 孙科1, 张玉全2, 赵梦晌3, 朱仁庆4
作者信息 +

HYDRODYNAMIC ANALYSIS OF PITCH MOTION OF TIDAL CURRENT TURBINE BASED ON IMPROVED DELAYED DETACHED EDDY SIMULATION METHOD

  • Ji Renwei1, Sun Ke1, Zhang Yuquan2, Zhao Mengshang3, Zhu Renqing4
Author information +
文章历史 +

摘要

为探究强迫纵摇运动对浮式潮流能水轮机水动力性能的影响,该文基于改进延迟分离涡模型(IDDES)与滑移网格技术相结合的方法,建立了浮式潮流能水轮机旋转和纵摇耦合运动的CFD数值模型。首先选取潮流能水轮机的水槽试验结果来验证所建立的数值模型的计算精度,其次在不同纵摇频率和纵摇幅值下,对浮式潮流能水轮机开展三维非定常模拟。研究结果表明:1)水轮机水动力系数(能量利用率系数和轴向载荷系数)的整体波动频率为纵摇频率的两倍,同时伴随着频率为叶轮转频的高频脉动;2)随着纵摇频率的增加,水轮机平均水动力系数略有增加,而随着纵摇幅值的增加,其平均水动力系数略有减小,但均小于无纵摇工况下的平均水动力系数;3)在纵摇最大振幅位置处,水轮机各叶片迎流面承受不同程度的水压载荷。纵摇运动对平衡位置和最大振幅位置处的尾迹均有影响,且尾迹出现较为明显的低速区摆动现象。

Abstract

In order to explore the effect of forced pitch motion on the hydrodynamic performance of the floating tidal current turbine, a CFD numerical model of rotation and pitch coupling motion of the floating tidal current turbine is established based on the combination method of improved delayed detached eddy simulation(IDDES) and sliding mesh technology. Firstly, the flume test results of the tidal current turbine are selected to validate the calculation accuracy of the established numerical model. Secondly, the three-dimensional unsteady simulation of the floating tidal current turbine is carried out under different pitch frequencies and pitch amplitudes. The research results show that:1)The overall fluctuation frequency of the hydrodynamic coefficient(energy utilization coefficient and axial load coefficient) of the turbine is twice the pitch frequency, accompanied by the high-frequency pulsation whose frequency is the rotation frequency of the rotor;2)With the increase of pitch frequency, the average hydrodynamic coefficient increases slightly, while with the increase of pitch amplitude, the average hydrodynamic coefficient decreases slightly, but they are less than the average hydrodynamic coefficient without pitch motion;3)At the position of the maximum pitch amplitude, the upstream surface of the turbine blade bears different degrees of hydraulic load. The pitch motion has an effect on the wake at the equilibrium position and the maximum amplitude position, and the wake has a relatively apparent low-speed swing phenomenon.

关键词

潮流能水轮机 / 纵摇运动 / 水动力性能 / 叶片载荷 / 尾迹摆动

Key words

tidal current turbine / pitch motion / hydrodynamic performance / blade load / wake swing

引用本文

导出引用
纪仁玮, 孙科, 张玉全, 赵梦晌, 朱仁庆. 基于改进延迟分离涡方法的潮流能水轮机纵摇运动水动力分析[J]. 太阳能学报. 2023, 44(6): 15-23 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0132
Ji Renwei, Sun Ke, Zhang Yuquan, Zhao Mengshang, Zhu Renqing. HYDRODYNAMIC ANALYSIS OF PITCH MOTION OF TIDAL CURRENT TURBINE BASED ON IMPROVED DELAYED DETACHED EDDY SIMULATION METHOD[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 15-23 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0132
中图分类号: TK513.5   

参考文献

[1] 张亮, 李新仲, 耿敬, 等. 潮流能研究现状2013[J]. 新能源进展, 2013, 1(1): 53-68.
ZHANG L, LI X Z, GENG J, et al.Tidal current energy update 2013[J]. Advances in new and renewable energy, 2013, 1(1): 53-68.
[2] 张亮, 尚景宏, 张之阳, 等. 潮流能研究现状2015: 水动力学[J]. 水力发电学报, 2016, 35(2): 1-15.
ZHANG L, SHANG J H, ZHANG Z Y, et al.Tidal current energy update 2015: hydrodynamics[J]. Journal of hydroelectric engineering, 2016, 35(2): 1-15.
[3] LI Y J, LIU H W, LIN Y G, et al.Design and test of a 600 kW horizontal-axis tidal current turbine[J]. Energy, 2019, 182: 177-186.
[4] GU Y J, LIU H W, LI W, et al.Integrated design and implementation of 120 kW horizontal-axis tidal current energy conversion system[J]. Ocean engineering, 2018, 158: 338-349.
[5] ZHANG Y Q, ZHANG J S, ZHENG Y, et al.Experimental analysis and evaluation of the numerical prediction of wake characteristics of tidal stream turbine[J]. Energies, 2017, 10(12): 2057.
[6] 荆丰梅, 陈鹏, 马伟佳. 剪切流对潮流能水平轴水轮机水动力性能的影响[J]. 船舶工程, 2019, 41(6): 1-5, 47.
JING F M, CHEN P, MA W J.Influence of the shear flow on the hydrodynamic performance of the horizontal axis tidal current turbine[J]. Ship engineering, 2019, 41(6): 1-5, 47.
[7] 司先才, 王树杰, 袁鹏, 等. 实海况下流速梯度对潮流能水轮机水动力性能影响的数值研究[J]. 太阳能学报, 2019, 40(8): 2220-2227.
SI X C, WANG S J, YUAN P, et al.CFD study on hydrodynamic performance of horizontal axis tidal turbine in a real velocity gradient environment[J]. Acta energiae solaris sinica, 2019, 40(8): 2220-2227.
[8] AHMADI M H B. Influence of upstream turbulence on the wake characteristics of a tidal stream turbine[J]. Renewable energy, 2019, 132: 989-997.
[9] 张玉全, 赵梦晌, 郑源, 等. 不同湍流强度下潮流能水轮机尾流特性试验研究[J]. 中国电机工程学报, 2020, 40(15): 4902-4909.
ZHANG Y Q, ZHAO M S, ZHENG Y, et al.Experimental study of different turbulence intensities on the wake characteristics of tidal turbines[J]. Proceedings of the CSEE, 2020, 40(15): 4902-4909.
[10] MYCEK P, GAURIER B, GERMAIN G, et al.Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: two interacting turbines[J]. Renewable energy, 2014, 68: 876-892.
[11] 司先才, 王树杰, 谭俊哲, 等. 真实地形条件下潮流场及水轮机的数值模拟与研究[J]. 太阳能学报, 2018, 39(9): 2499-2507.
SI X C, WANG S J, TAN J Z, et al.Numerical simulation of tidal current field and turbine over real terrain[J]. Acta energiae solaris sinica, 2018, 39(9): 2499-2507.
[12] KOH W X M, NG E Y K. A CFD study on the performance of a tidal turbine under various flow and blockage conditions[J]. Renewable energy, 2017, 107: 124-137.
[13] ZHANG Y Q, ZHANG Z, ZHENG J H, et al.Experimental investigation into effects of boundary proximity and blockage on horizontal-axis tidal turbine wake[J]. Ocean engineering, 2021, 225: 108829.
[14] 王树齐, 张亮, 徐刚, 等. 自由面条件下水平轴潮流能叶轮水动力研究[J]. 哈尔滨工程大学学报, 2016, 37(10): 1330-1334.
WANG S Q, ZHANG L, XU G, et al.Hydrodynamic analysis of a tidal current impeller in a horizontal axis under the condition of a free surface[J]. Journal of Harbin Engineering University, 2016, 37(10): 1330-1334.
[15] TIAN W L, NI X W, MAO Z Y, et al.Influence of surface waves on the hydrodynamic performance of a horizontal axis ocean current turbine[J]. Renewable energy, 2020, 158: 37-48.
[16] 王树齐, 张理, 耿敬, 等. 偏流角对潮流能水轮机水动力影响研究[J]. 太阳能学报, 2016, 37(1): 249-255.
WANG S Q, ZHANG L, GENG J, et al.Study on effect of yaw angle on hydrodynamics of tidal current turbine[J]. Acta energiae solaris sinica, 2016, 37(1): 249-255.
[17] 王树杰, 姜雪英, 袁鹏, 等. 偏航工况下潮流能水轮机性能及尾流场特性分析[J]. 中国海洋大学学报(自然科学版), 2019, 49(12): 122-128, 133.
WANG S J, JIANG X Y, YUAN P, et al.Performance and wake characteristics analysis for tidal turbine with yaw angle[J]. Periodical of Ocean University of China, 2019, 49(12): 122-128, 133.
[18] GALLOWAY P W, MYERS L E, BAHAJ A B S. Quantifying wave and yaw effects on a scale tidal stream turbine[J]. Renewable energy, 2014, 63: 297-307.
[19] MODALI P K, VINOD A, BANERJEE A.Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays[J]. Renewable energy, 2021, 177: 482-494.
[20] GUO X X, YANG J M, GAO Z, et al.The surface wave effects on the performance and the loading of a tidal turbine[J]. Ocean engineering, 2018, 156: 120-134.
[21] ZANG W, ZHENG Y, ZHANG Y Q, et al.Experiments on the mean and integral characteristics of tidal turbine wake in the linear waves propagating with the current[J]. Ocean engineering, 2019, 173: 1-11.
[22] JING F M, MA W J, ZHANG L, et al.Experimental study of hydrodynamic performance of full-scale horizontal axis tidal current turbine[J]. Journal of hydrodynamics, 2017, 29(1): 109-117.
[23] 袁鹏, 刘林, 司先才, 等. 波流耦合环境下潮流能水轮机阵列对区域潮流特性影响研究[J]. 太阳能学报, 2021, 42(9): 439-445.
YUAN P, LIU L, SI X C, et al.Study on influence of tidal turbine array on regional tidal stream characteristics under wave-current coupling[J]. Acta energiae solaris sinica, 2021, 42(9): 439-445.
[24] 马伟佳, 荆丰梅, 王树齐, 等. 浪流共同作用下潮流能水轮机性能试验研究[J]. 中国造船, 2017, 58(2): 189-198.
MA W J, JING F M, WANG S Q, et al.Experimental study on performance of tidal current turbine in the waves[J]. Shipbuilding of China, 2017, 58(2): 189-198.
[25] SUN K, JI R W, ZHANG J H, et al.Investigations on the hydrodynamic interference of the multi-rotor vertical axis tidal current turbine[J]. Renewable energy, 2021, 169: 752-764.
[26] 杜修茂, 司先才, 袁鹏, 等. 潮流能水轮机转子直径对阵列产能及附近水域的影响研究[J]. 太阳能学报, 2021, 42(11): 442-448.
DU X M, SI X C, YUAN P, et al.Study on influence of rotor diameters of tidal current turbine on array power and adjacent waters[J]. Acta energiae solaris sinica, 2021, 42(11): 442-448.
[27] ZHANG L, WANG S Q, SHENG Q H, et al.The effects of surge motion of the floating platform on hydrodynamics performance of horizontal-axis tidal current turbine[J]. Renewable energy, 2015, 74: 796-802.
[28] WANG S Q, CUI J, YE R C, et al.Study of the hydrodynamic performance prediction method for a horizontal-axis tidal current turbine with coupled rotation and surging motion[J]. Renewable energy, 2019, 135: 313-325.
[29] 姜劲, 孙科, 张亮, 等. 竖轴潮流能水轮机横荡和艏摇耦合水动力分析[J]. 哈尔滨工程大学学报, 2020, 41(4): 493-499.
JIANG J, SUN K, ZHANG L, et al.Hydrodynamic analysis of vertical-axis tidal turbines under the coupled motion of sway and yaw[J]. Journal of Harbin Engineering University, 2020, 41(4): 493-499.
[30] LEI H, ZHOU D, BAO Y, et al.Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion[J]. Energy, 2017, 127: 1-17.
[31] ZHANG Y Q, ZANG W, ZHENG J H, et al.The influence of waves propagating with the current on the wake of a tidal stream turbine[J]. Applied energy, 2021, 290: 116729.
[32] 周念福. 立轴水轮机振荡运动及水动力系数分析[D]. 哈尔滨: 哈尔滨工程大学, 2015.
ZHOU N F.Study on oscillation and hydrodynamic coefficients of vertical axis tidal current turbine[D]. Harbin: Harbin Engineering University, 2015.
[33] 于晓丽, 王树杰, 袁鹏, 等. 两种湍流模型在潮流能水轮机数值模拟中的适用性研究[J]. 中国海洋大学学报(自然科学版), 2019, 49(2): 114-120.
YU X L, WANG S J, YUAN P, et al.The study on the applicability of two turbulence models in the tidal turbine[J]. Periodical of Ocean University of China, 2019, 49(2): 114-120.
[34] 杨敏, 孟珣. 基于SST-IDDES方法的深吃水半潜平台 VIM 响应特征分析[J]. 水动力学研究与进展(A辑), 2019, 34(2): 238-247.
YANG M, MENG X.Response characteristics analysis of vortex-induced motions of deep draft semi-submersible platform using SST-IDDES[J]. Chinese journal of hydrodynamics, 2019, 34(2): 238-247.
[35] JI R W, SUN K, ZHANG J H, et al.A novel actuator line-immersed boundary(AL-IB) hybrid approach for wake characteristics prediction of a horizontal-axis wind turbine[J]. Energy conversion and management, 2022, 253: 115193.
[36] LEI H, SU J, BAO Y, et al.Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms[J]. Energy, 2019, 166: 471-489.
[37] 尹崇宏, 吴建威, 万德成. 基于IDDES方法的模型尺度和实尺度VLCC阻力预报与流场分析[J]. 水动力学研究与进展(A辑), 2016, 31(3): 259-268.
YIN C H, WU J W, WAN D C.Model and full-scale VLCC resistance prediction and flow field analysis based on IDDES method[J]. Chinese journal of hydrodynamics, 2016, 31(3): 259-268.
[38] KROGSTAD P Å, ERIKSEN P E.“Blind test” calculations of the performance and wake development for a model wind turbine[J]. Renewable energy, 2013, 50: 325-333.

基金

国家自然科学基金面上项目(52171255; 51979062); 工信部高技术船舶科研专项(MIIT2019357)

PDF(3174 KB)

Accesses

Citation

Detail

段落导航
相关文章

/