基于气候相似性与SSA-CNN-LSTM的光伏功率组合预测

王晓霞, 俞敏, 冀明, 耿泉峰

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 275-283.

PDF(1973 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1973 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 275-283. DOI: 10.19912/j.0254-0096.tynxb.2022-0161

基于气候相似性与SSA-CNN-LSTM的光伏功率组合预测

  • 王晓霞1, 俞敏1, 冀明2, 耿泉峰2
作者信息 +

PHOTOVOLTAIC POWER COMBINATION FORECASTING BASED ON CLIMATE SIMILARITY AND SSA-CNN-LSTM

  • Wang Xiaoxia1, Yu Min1, Ji Ming2, Geng Quanfeng2
Author information +
文章历史 +

摘要

针对高分辨率气象数据匮乏影响光伏功率预测准确性的问题,提出一种融合气候相似性与奇异谱分析(SSA)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的高分辨率光伏功率组合预测模型。运用SSA分解光伏序列为不同子序列,建立CNN-LSTM日前预测模型以捕捉光伏出力的连续性特征;利用气候相似性通过低分辨率气象数据选取相似日实现高分辨率光伏出力预测;通过灰色关联分析动态组合权重得到最终预测结果。仿真结果表明,该组合预测模型可有效提高日前高分辨率光伏功率预测的准确性,具有较高的预测精度。

Abstract

Aiming at the problem that the forecasting accuracy of photovoltaic power may be affected by the lack of high-resolution meteorological data, a high-resolution photovoltaic power combination forecasting model is proposed, which combines climate similarity with singular spectrum analysis (SSA), convolutional neural networks(CNN) and long short-term memory(LSTM). SSA is employed to decompose the photovoltaic sequence into different subsequences, and CNN-LSTM based on day ahead prediction model is established to capture the continuous characteristics of photovoltaic output. Moreover, the climate similarity is used to select similar days from low-resolution meteorological data to achieve high-resolution photovoltaic output prediction. Finally, the grey correlation analysis is utilized to obtain the combination weights to get the final prediction results. The simulation results show that the combined prediction model can effectively improve the prediction results of high-resolution photovoltaic power, and obtain high prediction accuracy.

关键词

光伏发电 / 预测 / 神经网络 / 高时间分辨率 / 相似性分析 / 奇异谱分析

Key words

photovoltaic power / forecasting / neural network / high time resolution / similarity analysis / singular spectrum analysis

引用本文

导出引用
王晓霞, 俞敏, 冀明, 耿泉峰. 基于气候相似性与SSA-CNN-LSTM的光伏功率组合预测[J]. 太阳能学报. 2023, 44(6): 275-283 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0161
Wang Xiaoxia, Yu Min, Ji Ming, Geng Quanfeng. PHOTOVOLTAIC POWER COMBINATION FORECASTING BASED ON CLIMATE SIMILARITY AND SSA-CNN-LSTM[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 275-283 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0161
中图分类号: TM615   

参考文献

[1] LIU X H, GENG C, XIE S H, et al.Day ahead thermal-photovoltaic economic dispatch considering uncertainty of photovoltaic power generation[J]. Journal of system simulation, 2022, 34(8): 1874-1884.
[2] 王飞, 米增强, 杨奇逊, 等. 基于神经网络与关联数据的光伏电站发电功率预测方法[J]. 太阳能学报, 2012, 33(7): 1172-1177.
WANG F, MI Z Q, YANG Q X, et al.Power forecasting approach of PV plant based on ANN and relevant data[J]. Acta energiae solaris sinica, 2012, 33(7): 1172-1177.
[3] 李芬, 李春阳, 糜强, 等. 基于GRA-BPNN时变权重的光伏短期出力组合预测[J]. 可再生能源, 2018, 36(11): 1605-1611.
LI F, LI C Y, MI Q, et al.The time-varying weight ensemble forecasting of short-term photovoltaic power based on GRA-BPNN[J]. Renewable energy resources, 2018, 36(11): 1605-1611.
[4] ZHANG X M, LI Y, LU S Y, et al.A solar time based analog ensemble method for regional solar power forecasting[J]. IEEE transactions on sustainable energy, 2019, 10(1): 268-279.
[5] 张娜, 葛磊蛟. 基于SOA优化的光伏短期出力区间组合预测[J]. 太阳能学报, 2021, 42(5): 252-259.
ZHANG N, GE L J.Photovoltaic system short-term power interval hybrid forecasting method based on seeker optimization algorithm[J]. Acta energiae solaris sinica, 2021, 42(5): 252-259.
[6] WANG K J, QI X X, LIU H D.A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network[J]. Applied energy, 2019, 251:113315.
[7] WANG K J, QI X X, LIU H D.Photovoltaic power forecasting based LSTM-convolutional network[J]. Energy, 2019, 189: 116225.
[8] RAMSAMI P, OREE V.A hybrid method for forecasting the energy output of photovoltaic systems[J]. Energy conversion and management, 2015, 95: 406-413.
[9] 陈涛, 王艳, 纪志成. 基于经验小波变换的光伏功率组合预测模型[J]. 系统仿真学报, 2021, 33(11): 2627-2635.
CHEN T, WANG Y, JI Z C.Combination forecasting model of photovoltaic power based on empirical wavelet transform[J]. Journal of system simulation, 2021, 33(11): 2627-2635.
[10] MANJILI Y S, VEGA R, JAMSHIDI M M.Data-Analytic-Based adaptive solar energy forecasting framework[J]. IEEE systems journal, 2018,12(1): 285-296.
[11] 黄雨薇, 彭道刚, 姚峻, 等. 基于SSA和K均值的TD-BP神经网络超短期光伏功率预测[J]. 太阳能学报, 2021, 42(4): 229-238.
HUANG Y W, PENG D G, YAO J, et al.Ultra-short-team photovoltaic power forecast of TD-BP neural network based on SSA and K-means[J]. Acta energiae solaris sinica, 2021, 42(4): 229-238.
[12] 冷亚军, 吴宗育, 赵文会, 等. 基于近邻传播聚类权重的黑启动方案评估方法[J]. 电力系统自动化, 2020, 44(13): 73-80.
LENG Y J, WU Z Y, ZHAO W H, et al.Assessment method of black-start scheme based on affinity propagation clustering weight[J]. Automation of electric power systems, 2020, 44(13): 73-80.
[13] 朱连江, 马炳先, 赵学泉. 基于轮廓系数的聚类有效性分析[J]. 计算机应用, 2010(增刊2): 139-141, 198.
ZHU L J, MA B X, ZHAO X Q.Clustering validity analysis based on silhouette coefficient[J]. Journal of computer applications, 2010(S2): 139-141, 198.
[14] 王小杨, 罗多, 孙韵琳, 等. 基于ABC-SVM和PSO-RF的光伏微电网发电功率组合预测方法研究[J]. 太阳能学报, 2020, 41(3): 177-183.
WANG X Y, LUO D, SUN Y L, et al.Combined forecasting method of daily photovoltaic power generation in microgrid based on ABC-SVM and PSO-RF models[J]. Acta energiae solaris sinica, 2020, 41(3): 177-183.
[15] 朱念芳, 林善明. 基于邻域KNN算法的风电功率短期预测模型[J]. 电测与仪表, 2017, 54(16): 20-24.
ZHU N F, LIN S M.Short-term wind power prediction model based on KNN algorithm considering neighbors density[J]. Electrical measurement & instrumentation, 2017, 54(16): 20-24.
[16] 陈中, 宗鹏鹏. 基于样本扩张灰色关联分析的光伏出力预测[J]. 太阳能学报, 2017, 38(11): 2909-2915.
CHEN Z, ZONG P P.Photovoltaic output prediction based on gray relational analysis of sample expansion[J]. Acta energiae solaris sinica, 2017, 38(11): 2909-2915.
[17] 许可, 王珏, 姚铁锤, 等. 基于分时LSTM的光伏发电功率预测[J]. 数据与计算发展前沿, 2021, 3(5): 109-117.
XU K, WANG J, YAO T C, et al.Photovoltaic power forecast based on time-division LSTM[J]. Frontiers of data & computing, 2021, 3(5): 109-117.

PDF(1973 KB)

Accesses

Citation

Detail

段落导航
相关文章

/