考虑多变量因素影响的光伏PEM制氢系统建模与分析

苏昕, 徐立军, 胡兵

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 521-529.

PDF(2705 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2705 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 521-529. DOI: 10.19912/j.0254-0096.tynxb.2022-0168

考虑多变量因素影响的光伏PEM制氢系统建模与分析

  • 苏昕1, 徐立军2, 胡兵3
作者信息 +

MODELLING AND ANALYSIS OF PHOTOVOLTAIC PEM HYDROGEN PRODUCTION SYSTEM CONSIDERING MULTIVARIABLE FACTORS

  • Su Xin1, Xu Lijun2, Hu Bing3
Author information +
文章历史 +

摘要

针对复杂工况对光伏制氢系统性能产生不确定性的影响,提出考虑多变量因素影响的光伏制氢系统模型,探索辐照度、温度、膜厚、压力等因素对光伏质子交换膜(PEM)制氢系统的影响。系统首先建立考虑辐照度、温度、膜厚、压力等因素影响的光伏-质子交换膜电解槽-氢储罐的光伏制氢模型,之后对系统进行定量计算和定性分析,并依据实际光伏数据进行实验验证。结果表明,在额定功率范围内,太阳电池输出电流和功率随辐照度的增加而增大,随温度的升高而降低。质子交换膜电解槽电压随辐照度、膜厚、压力的增加而增大,随温度的升高而减小。太阳电池输出功率、质子交换膜电解槽电压的变化趋势与辐照度变化趋势具有一致性。最终计算得到太阳电池系统、质子交换膜电解槽系统和总系统效率分别为16.8%、72.2%和12.1%。

Abstract

For the uncertain influence of complicated working conditions on the photovoltaic hydrogen production system performance, this paper puts forward a photovoltaic hydrogen production system model that takes into account the influence of multivariable factors and explores the effects of the light intensity, temperature, film thickness, pressure and other factors on the photovoltaic-proton exchange membrane (PEM) hydrogen production system. The PV hydrogen production model of solar cell-proton exchange membrane electrolyzer, which considers the solar irradiance, temperature, film thickness and pressure and other factors, is first established in the system. Then, the system is quantitatively calculated and qualitatively analyzed and is also experimentally verified based on the actual PV data. The results show that within the rated power range, the solar cell output current and power increase with light intensity and decrease with the temperature increase. In addition, the PEM electrolyzer voltage increases with light intensity, film thickness and pressure, and decreases with temperature. The trend of the solar cell output power and PEM electrolyzer voltage are consistent with the trends of the light intensity. At last, the calculation show that there are 16.8%, 72.2% and 12.1% efficiencies for the solar cell system, the PEM electrolyzer system and the total system, respectively.

关键词

质子交换膜 / 太阳电池 / 光伏制氢 / 多变量 / 系统效率

Key words

proton exchange membrane / solar cells / photovoltaic hydrogen production / multivariate / system efficiency

引用本文

导出引用
苏昕, 徐立军, 胡兵. 考虑多变量因素影响的光伏PEM制氢系统建模与分析[J]. 太阳能学报. 2022, 43(6): 521-529 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0168
Su Xin, Xu Lijun, Hu Bing. MODELLING AND ANALYSIS OF PHOTOVOLTAIC PEM HYDROGEN PRODUCTION SYSTEM CONSIDERING MULTIVARIABLE FACTORS[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 521-529 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0168
中图分类号: TK91   

参考文献

[1] 张海龙. 中国新能源发展研究[D]. 长春: 吉林大学, 2014.
ZHANG H L.Research on China’s new energy development[D]. Changchun: Jilin University, 2014.
[2] 国家能源局发布2020年全国电力工业统计数据[EB/OL]. http://www.nea.gov.cn/2021-01/20/c-139683739.
National Energy Administration releases 2020 National Electric Power Industry Statistics[EB/OL] http://www.nea.gov.cn/2021-01/20/c-139683739.htm,2021.
[3] 王振, 苏烨, 张江丰, 等. 基于氢储能的光伏发电系统[J]. 电源技术, 2021, 45(10): 1333-1336.
WANG Z, SU Y, ZHANG J F, et al.Photovoltaic power generation system based on hydrogen energy storage[J]. Power technology, 2021, 45(10): 1333-1336.
[4] 李军徽, 张嘉辉, 李翠萍, 等. 参与调峰的储能系统配置方案及经济性分析[J]. 电工技术学报, 2021, 36(19): 4148-4160.
LI J H, ZHANG J H, LI C P, et al.Configuration scheme and economic analysis of energy storage system involved in peak shaving[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4148-4160.
[5] 郭小强, 魏玉鹏, 万燕鸣, 等. 新能源制氢电力电子变换器综述[J]. 电力系统自动化, 2021, 45(20): 185-199.
GUO X Q, WEI Y P, WAN Y M, et al.Review of new energy hydrogen production power electronic converters[J]. Automation of electric power systems, 2021, 45(20): 185-199.
[6] CHIU Y H, LAI T H, KUO M Y, et al.Photoelectrochemical cells for solar hydrogen production: challenges and opportunities[J]. APL materials, 2019, 7(8): 080901.
[7] 李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J]. 太阳能学报, 2022, 43(3): 2-11.
LI J L, LIANG Z H, LI G H, et al.Research on key technologies of solar hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(3): 2-11.
[8] 徐立军, 王维庆, 段友莲, 等. 用DC/DC变换器进行光伏直接耦合制氢的优化方法[J]. 电源技术, 2018, 42(11): 1668-1671.
XU L J, WANG W Q, DUAN Y L, et al.Optimization method for photovoltaic direct coupled hydrogen production using DC/DC converter[J]. Power technology, 2018, 42(11): 1668-1671.
[9] DUC T N, GOSHOME K, ENDO N, et al.Optimization strategy for high efficiency 20 kW-class direct coupled photovoltaic-electrolyzer system based on experiment data[J]. International journal of hydrogen energy, 2019, 44(49): 26741-26752.
[10] 周宏飞, 杨旭海, 赵咪, 等. 基于改进模糊控制算法的光伏系统中MPPT控制策略[J]. 石河子大学学报(自然科学版), 2020, 38(5): 554-559.
ZHOU H F, YANG X H, ZHAO M, et al.MPPT control strategy in photovoltaic system based on improved fuzzy control algorithm[J]. Journal of Shihezi University(natural science), 2020, 38(5): 554-559.
[11] KHELFAOUI N, DJAFOUR A, GHENAI C, et al.Experimental investigation of solar hydrogen production PV/PEM electrolyser performance in the Algerian Sahara regions[J]. International journal of hydrogen energy, 2020, 46(59): 30524-30538.
[12] KEMPPAINEN E, ASCHBRENNER S, BAO F, et al.Effect of the ambient conditions on the operation of a large-area integrated photovoltaic-electrolyser[J]. Sustainable energy & fuels, 2020, 4(9): 4831-4847.
[13] YANG Z, LIN J, ZHANG H, et al.A new direct coupling method for photovoltaic module-PEM electrolyzer stack for hydrogen production[J]. Fuel cells, 2018, 18(4): 543-550.
[14] GÜL M, AKYÜZ E. Hydrogen generation from a small-scale solar photovoltaic thermal (PV/T) electrolyzer system: numerical model and experimental verification[J]. Energies, 2020, 13(11): 2997.
[15] SALARI A, HAKKAKI F A, JALALIDIL A.Hydrogen production performance of a photovoltaic thermal system coupled with a proton exchange membrane electrolysis cell[J]. International journal of hydrogen energy, 2022, 47(7): 4472-4488.

基金

国家自然科学基金(51967020); 新疆维吾尔自治区自然科学基金(2021D01A66; 2019D01A30); 自治区区域协同创新专项(科技援疆计划)(2021E02044); 乌鲁木齐市优秀青年科技人才项目:新疆地区风电制氢关键技术研究

PDF(2705 KB)

Accesses

Citation

Detail

段落导航
相关文章

/