新一代涡识别方法在大偏航条件下风电机组复杂尾涡辨识中的适用性研究

纪仁玮, 孙科, 朱仁庆, 张幸雨, 张阁, 张玉全

太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 486-495.

PDF(2676 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2676 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 486-495. DOI: 10.19912/j.0254-0096.tynxb.2022-0179

新一代涡识别方法在大偏航条件下风电机组复杂尾涡辨识中的适用性研究

  • 纪仁玮1, 孙科1,2, 朱仁庆3, 张幸雨1, 张阁1, 张玉全4
作者信息 +

STUDY ON APPLICABILITY OF NEW GENERATION VORTEX IDENTIFICATION METHOD FOR COMPLEX WAKE VORTEX IDENTIFICATION OF WIND TURBINES UNDER LARGE YAW CONDITIONS

  • Ji Renwei1, Sun Ke1,2, Zhu Renqing3, Zhang Xingyu1, Zhang Ge1, Zhang Yuquan4
Author information +
文章历史 +

摘要

为进一步了解大偏航条件下串列风力机组的复杂尾流特性,采用4种不同的涡识别方法(第一代Vorticity、第二代Q、第三代Liutex、第三代NewOmega)可视化串列风机组的尾涡结构,以探究新一代(第三代)涡识别方法(Liutex、NewOmega)在风力机大偏航条件下的适用性。首先,基于致动线(actuator line,AL)模型和一种局部动态Smagorinsky(localized dynamic Smagorinsky,LDS)亚格子模型,开发一套精度高、计算成本低的水平轴风力机尾流精细化数值模拟框架(AL-LDS耦合模型框架)。其次,选取NREL-5MW风力机为研究对象,将AL-LDS耦合模型的模拟结果与NREL基准值进行对比,从而验证AL-LDS耦合模型的精度。最后,编写最新的第三代涡识别方法(Liutex、NewOmega)后处理程序,并将新一代涡识别方法应用到大偏航条件下串列风力机组的尾涡辨识中,进而分析多机组间的复杂尾涡流动机理。结果表明:1)AL-LDS耦合模型具有较高的计算精度;2)第三代涡识别方法同样适用于大偏航条件下风力机尾涡结构的可视化,且可捕捉到尾流中成对的涡脱落现象以及破碎弱涡结构。

Abstract

To further understand the complex wake characteristics of tandem wind turbines under large yaw conditions, four different vortex identification methods (first generation Vorticity, second generation Q, third generation Liutex, and third generation New Omega) are used to visualize the wake vortex structure of tandem wind turbines, so as to explore the applicability of the new generation (third generation) vortex identification methods (Liutex and New Omega) under large yaw conditions. Firstly, based on the actuator line (AL) model and a localized dynamic Smagorinsky (LDS) sub-grid scale (SGS) model, a refined numerical simulation framework (AL-LDS coupling model framework) for wake simulation of the horizontal-axis wind turbine with high accuracy and low computational cost is developed. Secondly, the NREL-5MW wind turbine is selected as the research object. The simulation results of the AL-LDS coupling model are compared with the NREL reference value to validate the accuracy of the AL-LDS coupling model. Finally, the post-processing program of the latest third generation vortex identification methods (Liutex and New Omega) are compiled, and the new generation vortex identification methods are applied to the wake vortex identification of tandem wind turbines under large yaw conditions, so as to analyze the complex wake vortex flow mechanism between multiple wind turbines. The results show that the AL-LDS coupling model has high simulation accuracy, the third generation vortex identification methods are also suitable for the visualization of wind turbines wake vortex structure under large yaw conditions, and can capture the paired vortex shedding phenomenon and broken weak vortex structures in the wake.

关键词

风力机 / 致动线 / 大涡模拟 / 偏航 / 新一代涡识别方法 / 精细化数值模拟

Key words

wind turbines / actuator line / large eddy simulation / yaw / new generation vortex identification methods / refined numerical simulation

引用本文

导出引用
纪仁玮, 孙科, 朱仁庆, 张幸雨, 张阁, 张玉全. 新一代涡识别方法在大偏航条件下风电机组复杂尾涡辨识中的适用性研究[J]. 太阳能学报. 2023, 44(7): 486-495 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0179
Ji Renwei, Sun Ke, Zhu Renqing, Zhang Xingyu, Zhang Ge, Zhang Yuquan. STUDY ON APPLICABILITY OF NEW GENERATION VORTEX IDENTIFICATION METHOD FOR COMPLEX WAKE VORTEX IDENTIFICATION OF WIND TURBINES UNDER LARGE YAW CONDITIONS[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 486-495 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0179
中图分类号: TK83   

参考文献

[1] 黎作武, 贺德馨. 风能工程中流体力学问题的研究现状与进展[J]. 力学进展, 2013, 43(5): 472-525.
LI Z W, HE D X.Reviews of fluid dynamics researches in wind energy engineering[J]. Advances in mechanics, 2013, 43(5): 472-525.
[2] 胡志强. 浮式风机动力响应分析关键技术综述[J]. 船舶与海洋工程, 2020, 36(6): 1-13.
HU Z Q.A review on the key technologies of dynamic response prediction of floating offshore wind turbines[J]. Naval architecture and ocean engineering, 2020, 36(6): 1-13.
[3] 陈嘉豪, 裴爱国, 马兆荣, 等. 海上漂浮式风机关键技术研究进展[J]. 南方能源建设, 2020, 7(1): 8-20.
CHEN J H, PEI A G, MA Z R, et al.A review of the key technologies for floating offshore wind turbines[J]. Southern energy construction, 2020, 7(1): 8-20.
[4] VEERS P, DYKES K, LANTZ E, et al.Grand challenges in the science of wind energy[J]. Science, 2019, 366: 443-443.
[5] WANG L, LIU X W, KOLIOS A.State of the art in the aeroelasticity of wind turbine blades: aeroelastic modelling[J]. Renewable and sustainable energy reviews, 2016, 64: 195-210.
[6] 刘惠文, 郑源, 张玉全, 等. 风电场湍流积分长度演变实验研究[J]. 太阳能学报, 2020, 41(9): 331-337.
LIU H W, ZHENG Y, ZHANG Y Q, et al.Experimental investigation on evolution of integral length scale within wind farm[J]. Acta energiae solaris sinica, 2020, 41(9): 331-337.
[7] 张玉全, 赵梦晌, 郑源, 等. 不同湍流强度下潮流能水轮机尾流特性试验研究[J]. 中国电机工程学报, 2020, 40(15): 4902-4909.
ZHANG Y Q, ZHAO M S, ZHENG Y, et al.Experimental study of different turbulence intensities on the wake characteristics of tidal turbines[J]. Proceedings of the CSEE, 2020, 40(15): 4902-4909.
[8] SUN K, JI R W, ZHANG J H, et al.Investigations on the hydrodynamic interference of the multi-rotor vertical axis tidal current turbine[J]. Renewable energy, 2021, 169: 752-764.
[9] 袁仁育. 基于多尺度耦合模式的风电场流动及运行特性数值模拟研究[D]. 杭州: 浙江大学, 2018.
YUAN R Y.Numerical simulation of wind farm flow and operation characteristics based on multi-scale coupling model[D]. Hangzhou: Zhejiang University, 2018.
[10] SHARMA V, CORTINA G, MARGAIRAZ F, et al.Evolution of flow characteristics through finite-sized wind farms and influence of turbine arrangement[J]. Renewable energy, 2018, 115: 1196-1208.
[11] 张昇龙. 水平轴风力机尾流场及其气动性能的研究[D]. 兰州: 兰州理工大学, 2014.
ZHANG S L.Analysis of wake flow fields and aerodynamic performance for horizontal-axis wind turbine[D]. Lanzhou: Lanzhou University of Technology, 2014.
[12] 金锐. 偏航工况下低空急流对水平轴风力机气动性能的影响[D]. 兰州: 兰州理工大学, 2019.
JIN R.Effect of LLJ on aerodynamic performance of horizontal-axis wind turbine under yaw conditions[D]. Lanzhou: Lanzhou University of Technology, 2019.
[13] FLEMING P, GEBRAAD P M O, LEE S, et al. Simulation comparison of wake mitigation control strategies for a two-turbine case[J]. Wind energy, 2015, 18(12): 2135-2143.
[14] HORNUNG C, VIELLIEBER M, CLASS A.Simulation of wake effects of windfarms using an actuator disk implementation[J]. PAMM, 2015, 15(1): 487-488.
[15] GEBRAAD P M O, FLEMING P A, WINGERDEN J W V. Comparison of actuation methods for wake control in wind plants[C]//2015 American Control Conference (ACC), Chicago, USA, 2015.
[16] SHEN W Z, ZHU W J, YANG H.Validation of the actuator line model for simulating flows past yawed wind turbine rotors[J]. Journal of power and energy engineering, 2015, 3(7): 7-13.
[17] QIAN Y R, ZHANG Z Y, WANG T G.Comparative study of the aerodynamic performance of the new MEXICO rotor under yaw conditions[J]. Energies, 2018, 11(4): 833.
[18] GAO Z T, LI Y, WANG T G, et al.Modelling the nacelle wake of a horizontal-axis wind turbine under different yaw conditions[J]. Renewable energy, 2021, 172: 263-275.
[19] HUANG Y, CAO L S, WAN D C.Application of liutex for analysis of complex wake flows characteristics of the wind turbine[C]//Liutex and Third Generation of Vortex Definition and Identification, Springer, Cham, 2021: 353-371.
[20] 马玏. 偏航控制对下游风电机组功率的影响研究[D]. 北京: 华北电力大学, 2017.
MA L.Influence of yaw control on downstream wind turbine power[D]. Beijing: North China Electric Power University, 2017.
[21] 杨从新, 何攀, 张旭耀, 等. 轮毂高度差或上游风力机偏航角对风力机总功率输出的影响[J]. 农业工程学报, 2018, 34(22): 155-161.
YANG C X, HE P, ZHANG X Y, et al.Influence of hub height difference or upstream wind turbine yaw angle on wind turbines total power output[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 155-161.
[22] WANG B C, BERGSTROM D J.A general optimal formulation for the dynamic smagorinsky subgrid-scale stress model[J]. International journal for numerical methods in fluids, 2005, 49(12): 1359-1389.
[23] PIOMELLI U, LIU J H.Large-eddy simulation of rotating channel flows using a localized dynamic model[J]. Physics of fluids, 1995, 7(4): 839-848.
[24] LIU C Q, GAO Y S, DONG X R, et al.Third generation of vortex identification methods: Omega and Liutex/Rortex based systems[J]. Journal of hydrodynamics, 2019, 31(2): 205-223.
[25] JI R W, SUN K, ZHANG J H, et al.A novel actuator line-immersed boundary (AL-IB) hybrid approach for wake characteristics prediction of a horizontal-axis wind turbine[J]. Energy conversion and management, 2022, 253: 115193.
[26] SØRENSEN J N, SHEN W Z. Numerical modeling of wind turbine wakes[J]. Journal of fluids engineering, 2002, 124(2): 393-399.
[27] LIN X F, ZHANG J S, ZHANG Y Q, et al.Comparison of actuator line method and full rotor geometry simulations of the wake field of a tidal stream turbine[J]. Water, 2019, 11(3): 560.
[28] YU Z Y, HU Z H, ZHENG X, et al.Aeroelastic performance analysis of wind turbine in the wake with a new elastic actuator line model[J]. Water, 2020, 12(5): 1233.
[29] 段鑫泽, 程萍, 万德成. 带偏航角串列式两风机复杂尾流场数值模拟[J]. 海洋工程, 2019, 37(2): 50-58.
DUAN X Z, CHEN P, WAN D C.Numerical study of wake interaction between two wind turbines operating in different yaw angles[J]. The ocean engineering, 2019, 37(2): 50-58.
[30] 王义乾, 桂南. 第三代涡识别方法及其应用综述[J]. 水动力学研究与进展(A辑), 2019, 34(4): 413-429.
WANG Y Q, GUI N.A review of the third-generation vortex identification method and its applications[J]. Chinese journal of hydrodynamics, 2019, 34(4): 413-429.
[31] WANG Y Q, GAO Y S, XU H Y, et al.Liutex theoretical system and six core elements of vortex identification[J]. Journal of hydrodynamics, 2020, 32(2): 197-211.
[32] REN Z, WANG J H, WAN D C.Investigation of the flow field of a ship in planar motion mechanism tests by the vortex identification method[J]. Journal of marine science and engineering, 2020, 8(9): 649.
[33] LIU C Q, WANG Y Q, YANG Y, et al.New omega vortex identification method[J]. Science China physics, mechanics & astronomy, 2016, 59(8): 1-9.
[34] LIU C Q, GAO Y S, TIAN S L, et al.Rortex: a new vortex vector definition and vorticity tensor and vector decompositions[J]. Physics of fluids, 2018, 30(3): 035103.
[35] DONG X R, GAO Y S, LIU C Q.New normalized rortex/vortex identification method[J]. Physics of fluids, 2019, 31(1): 011701.
[36] ZHAO W W, WANG J H, WAN D C.Vortex identification methods in marine hydrodynamics[J]. Journal of hydrodynamics, 2020, 32(2): 286-295.
[37] GUI N, QI H B, GE L, et al.Analysis and correlation of fluid acceleration with vorticity and Liutex(Rortex) in swirling jets[J]. Journal of hydrodynamics, 2019, 31(5): 864-872.
[38] 于双瑞. Spar 型海上浮式风机气动性能的数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
YU S R.The aerodynamic analysis of Spar type floating offshore wind turbine[D]. Harbin: Harbin Engineering University, 2018.
[39] ZOU C L, WANG Q, LIAO K P, et al.Analysis of the tower influence on floating offshore wind turbine aerodynamic performance based on CFD method[C]//The 28th International Ocean and Polar Engineering Conference, Sapporo, Japan, 2018.
[40] ZHAO W C, WAN D C.Numerical study of interactions between phase II of OC4 wind turbine and its semi-submersible floating support system[J]. Journal of ocean and wind energy, 2015, 2(1): 45-53.
[41] LI P F, CHENG P, WAN D C, et al.Numerical simulations of wake flows of floating offshore wind turbines by unsteady actuator line model[C]//Proceedings of the 9th International Workshop on Ship and Marine Hydrodynamics, Glasgow, UK, 2015.
[42] 刘强. 漂浮式风力机动态响应及气动特性研究[D]. 北京: 中国科学院大学, 2014.
LIU Q.Dynamic response and aerodynamic characteristics of floating wind turbines[D]. Beijing: University of Chinese Academy of Sciences, 2014.
[43] 刘强, 杨科, 黄宸武, 等. 5 MW大型风力机气动特性计算及分析[J]. 工程热物理学报, 2012, 33(7): 1155-1159.
LIU Q, YANG K, HUANG C W, et al.Simulation and analysis of the aerodynamic characteristics of a 5 MW wind turbine[J]. Journal of engineering thermophysics, 2012, 33(7): 1155-1159.

基金

国家自然科学基金委-山东联合基金重点项目(U1906230); 国家自然科学基金面上项目(51979062; 52171255); 华能集团总部科技项目海上风电与智慧能源系统科技专项(一期)(HNKJ20-H88)

PDF(2676 KB)

Accesses

Citation

Detail

段落导航
相关文章

/