天然气制氢尾气碳减排工艺设计与优化

郭明钢

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 500-507.

PDF(1703 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1703 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 500-507. DOI: 10.19912/j.0254-0096.tynxb.2022-0187

天然气制氢尾气碳减排工艺设计与优化

  • 郭明钢
作者信息 +

DESIGN AND OPTIMIZATION OF CARBON EMMISLON REDUCTION PROCESS OF VENT GAS HYDROGEN PRODUCTION FROM NATURAL GAS

  • Guo Minggang
Author information +
文章历史 +

摘要

开发多种类分离膜与压缩冷凝耦合的梯度回收工艺,实现H2和CO2等组分高价值利用。考察压力、产品浓度和不同氢膜单元对工艺的影响。通过Aspen HYSYS对10000 Nm3/h处理量的工艺优化模拟得出:采用单级氢膜单元和一级二段氢膜单元,尾气进膜压力2700 kPa和H2产品浓度60%时,工艺经济性最佳,分别实现H2回收率81%和90%、CO2回收率58%和60%、燃气热值16.7 MJ/Nm3和18.2 MJ/Nm3、投资回收期26.1 个月和24.4 个月。采用二级氢膜单元投资最少,最佳投资回收期16.5 个月时,氢气产品纯度为52%,低于制氢吸附装置设计要求。

Abstract

In this regard, a gradient recovery process coupled with various types of separation membranes and compression condensation is developed to achieve high-value utilization of components such as H2 and CO2. The effects of pressure, product concentration and different hydrogen membrane units on the process are investigated. Through the process optimization simulation of Aspen HYSYS for a throughput of 10000 Nm3/h, it is concluded that when the single-stage hydrogen membrane unit and the single-stage two-step hydrogen membrane unit are used, the process economy is best when the exhaust gas inlet pressure is 2700 kPa and the H2 product concentration is 60%. The H2 recovery rate is 81% and 90%, the CO2 recovery rate is 58% and 60%, the gas calorific value is 16.7 MJ/Nm3 and 18.2 MJ/Nm3, and the investment recovery period is 26.1 months and 24.4 months, respectively. When the second-stage hydrogen membrane unit is used, the investment is least, and when the best payback period is 16.5 months, the purity of the hydrogen product is 52%, which is lower than the design requirements of the hydrogen production adsorption device.

关键词

天然气 / 制氢 / / 碳捕集 / 工艺设计 / 氢回收

Key words

natural gas / hydrogen production / membrane / carbon capture / process design / hydrogen recovery

引用本文

导出引用
郭明钢. 天然气制氢尾气碳减排工艺设计与优化[J]. 太阳能学报. 2022, 43(6): 500-507 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0187
Guo Minggang. DESIGN AND OPTIMIZATION OF CARBON EMMISLON REDUCTION PROCESS OF VENT GAS HYDROGEN PRODUCTION FROM NATURAL GAS[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 500-507 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0187
中图分类号: TK6    TQ028   

参考文献

[1] 黄格省, 李锦山, 魏寿祥, 等. 化石原料制氢技术发展现状与经济性分析[J]. 化工进展, 2019, 38(12): 6-13.
HUANG G X, LI J S, WEI S X, et al.Development status and economic analysis of hydrogen production technology from fossil materials[J]. Chemical industry and engineering progress, 2019, 38(12): 6-13.
[2] KANNAH R Y, KAVITHA S, KARTHIKEYAN O P, et al.Techno-economic assessment of various hydrogen production methods-a review[J]. Bioresource technology, 2021, 319: 124175.
[3] SHIM H M, CHUN W G, KIM H T.Comparative simulation of hydrogen production derived from gasification system with CO2 reduction by various feedstocks[J]. International journal of energy research, 2010, 34(5): 412-421.
[4] SULEMAN F.Environmental impact assessment and compar-ison of some hydrogen production options[J]. International journal of hydrogen energy, 2015, 40(21): 6976-6987.
[5] SHI W R, YANG H W, SHEN Y H, et al.Two-stage PSA/VSA to produce H2 with CO2 capture via steam methane reforming (SMR)[J]. International journal of hydrogen energy, 2018, 43(41): 19057-19074.
[6] GODIN J, LIU W, REN S, et al.Advances in recovery and utilization of carbon dioxide: a brief review[J]. Journal of environmental chemical engineering, 2021, 9(4): 105644.
[7] CAPOCELLI M, LUBERTI M, INNO S, et al.Post-combus-tion CO2 capture by RVPSA in a large-scale steam reforming plant[J]. Journal of CO2 utilization, 2019, 32: 53-65.
[8] LIN H, HE Z, SUN Z, et al.CO2-selective membranes for hydrogen production and CO2 capture-Part I: membrane development[J]. Journal of membrane science, 2014, 457: 149-161.
[9] 周天宇. 膜与深冷联合/耦合回收乙烯裂解气中的氢气[D]. 大连: 大连理工大学, 2016.
ZHOU T Y.Hydrogen recovery from ethylene cracking gas by membrane and cryogenic combination/coupling[D]. Dalian: Dalian University of Technology, 2016.
[10] 黄伟荣. 煤制氢膜分离与蜡油加氢耦合流程设计与优化[D]. 大连: 大连理工大学, 2019.
HUANG W R.Process design and optimization of membrane separation of H2/CO2 based on coal gasification coupling with gasoil hydrogenation[D]. Dalian: Dalian University of Technology, 2019.
[11] 贺学文. 天然气蒸汽转化—PSA联合制氢中转化反应器模型研究及系统开发应用[D]. 北京: 北京化工大学, 2001.
HE X W.Dynamic simulation model study of reforming reactor for natural gas steam reforming-PSA union plant and its development and application[D]. Beijing: Beijing University of Chemical Technology, 2001.
[12] 付德生. 辽化炼厂气膜法低压氢回收装置的设计研究[D]. 大连: 大连理工大学, 2006.
FU D S.Design and research of low pressure hydrogen recovery device by gas film method in Liaohua Refinery [D]. Dalian: Dalian University of Technology, 2006.
[13] 范瑛琦, 阮雪华, 贺高红, 等. 膜法回收GTL驰放气中氢气的模拟[C]//新膜过程研究与应用研讨会, 天津, 2008.
FAN Y Q, RUAN X H, HE G H, et al.Simulation of hydrogen recovery from GTL flap gas by membrane method[C]//Symposium on Research and Application of New Membrane Process, Tianjin, 2008.
[14] RAMASUBRAMANIAN K, ZHAO Y A, WINSTON HO W S. CO2 capture and H2 purification: prospects for CO2-selective membrane processes[J]. Aiche journal, 2013, 59(4): 1033-1045.
[15] SOLTANI R, ROSEN M A, DINCER I.Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production[J]. International journal of hydrogen energy, 2014, 39(35): 20266-20275.
[16] SIRCAR S, WALDRON W E, RAO M B, et al.Hydrogen production by hybrid SMR-PSA-SSF membrane system[J]. Separation & purification technology, 1999, 17(1): 11-20.
[17] PERNA A.Combined power and hydrogen production from coal. Part A: analysis of IGHP plants[J]. International journal of hydrogen energy, 2008, 33(12): 2957-2964.
[18] ONI A O, ANAYA K, GIWA T, et al.Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions-ScienceDirect[J]. Energy conversion and management, 2022, 254: 115245.
[19] REDDY S, VYAS S.Recovery of carbon dioxide and hydro-gen from PSA tail gas[J]. Energy procedia, 2009, 1(1): 149-154.
[20] LIN H Q, HE Z J, SUN Z, et al.CO2-selective membranes for hydrogen production and CO2 capture-Part II: techno-economic analysis[J]. Journal of membrane science, 2015, 493: 794-806.
[21] 泰里安 P,肖贝 T, 尚布哈格 P V, 等. 回收氢气并俘获二氧化碳的方法: CN104411624A[P].2015-03-11.
TERRIEN P, CHAUBEY T, SHANBHAG P V, et al. Process for recovering hydrogen and capturing carbon dioxide: CN104411624A[P].2015-03-11.
[22] VALAPPIL R, GHASEM N, Al-MARZOUQI M.Current and future trends in polymer membrane-based gas separation technology: a comprehensive review[J]. Journal of industrial and engineering chemistry, 2021, 98: 103-129.
[23] 彭福兵, 刘家祺. 气体分离膜材料研究进展[J]. 化工进展, 2002, 21(11): 820-823.
PENG F B, LIU J Q.Progress of research on materials of gas separation membrane[J]. Chemical industry and engineering progress, 2002, 21(11): 820-823.
[24] CHOI W, INGOLE P G, LI H, et al.Preparation of facilitated transport hollow fiber membrane for gas separation using cobalt tetraphenylporphyrin complex as a coating material[J]. Journal of cleaner production, 2016, 133: 1008-1016.
[25] 阮雪华, 贺高红, 肖武, 等. 生物甲烷膜分离提纯系统的设计与优化[J]. 化工学报, 2014, 65(5): 1688-1695.
RUAN X H, HE G H, XIAO W, et al.Design and optimiza-tion of biomethane membrane separation and purification system[J]. Ciesc journal, 2014, 65(5): 1688-1695.
[26] DONG G X, WOOK T W, KIM J, et al.Simulation and feasibility study of using thermally rearranged polymeric hollow fiber membranes for various industrial gas separation application[J]. Journal of membrane science, 2015, 496: 229-241.
[27] AHMAD F, LAU K K, LOCK S S M, et al. Hollow fiber membrane model for gas separation: process simulation, experimental validation and module characteristics study[J]. Journal of industrial and engineering chemistry, 2015, 21: 1246-1257.
[28] 肖红岩, 郭明钢, 贺高红, 等. 氢气分离膜内嵌改进蒸汽活化转化丙烷脱氢过程模拟和经济分析[J]. 化工进展, 2019, 38(12): 5257-5263.
XIAO H Y, GUO M G, HE G H, et al.Retrofit and optimization of steam active reforming (STAR) propane dehydrogenation technology with embedded hydrogen membrane separation[J]. Chemical industry and engineering progress, 2019, 38(12): 5257-5263.

基金

国家自然科学基金青年基金(21706023); 辽宁省“兴辽英才”计划青年拔尖人才(XLYC2007040)

PDF(1703 KB)

Accesses

Citation

Detail

段落导航
相关文章

/