面向浮式风力机组混合模型试验的多通道载荷复现器设计与性能测试

梁泽浩, 田新亮, 温斌荣, 彭志科, 李欣, 武广兴

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 413-419.

PDF(2753 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2753 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 413-419. DOI: 10.19912/j.0254-0096.tynxb.2022-0191

面向浮式风力机组混合模型试验的多通道载荷复现器设计与性能测试

  • 梁泽浩1,2, 田新亮1,2, 温斌荣1,2, 彭志科3, 李欣1,2, 武广兴4
作者信息 +

MULTI-CHANNEL AERODYNAMIC LOAD SIMULATOR FOR FLOATING WIND TURBINE HYBRID MODEL TESTS: DEVELOPMENT AND TEST

  • Liang Zehao1,2, Tian Xinliang1,2, Wen Binrong1,2, Peng Zhike3, Li Xin1,2, Wu Guangxing4
Author information +
文章历史 +

摘要

针对浮式风力机组水池模型试验对于风力机组模型尺度气动载荷精确实时模拟的要求,以OO-Star 10 MW浮式风力机组为模拟对象,设计制作一套面向浮式风力机组混合模型试验的多通道载荷复现器。对载荷复现器进行一系列静态、动态载荷复现测试。结果表明,复现器对于稳态风载的复现误差小于4%,最大正向、负向动态载荷变化率为30和27 N/s;在实景湍流风场作用下,复现器对实际风力机组的时变气动推力的频谱能量主区复现率达到99%以上,可有效提升混合模型试验的准确性与可靠性。

Abstract

Aiming at the requirements of accurate real-time simulation of aerodynamic load on the scale of wind turbine model for the pool model test of floating wind turbines(FWTs),a multi-channel aerodynamic load simulator(MALS) is designed and manufactured specifically for the hybrid model test of FWTS, TAKING THE OO-star 10 MW FWT as the object of analysis. To evaluate the performance of the proposed MALS,a series of static and dynamic thrust reproduction tests are performed. The results show that the MALS error for steady-state wind loads is less than 4%. The acceleration and deceleration capacities of the MALS reach 30 N/s and 27 N/s, respectively. Under the action of real turbulent wind field, more than 99% of the thrust energy at 0-3 Hz can be reproduced for practical wind turbines. It is shown that the proposed MALS can effectively improve the accuracy and reliability of hybrid model tests for FWTs.

关键词

海上风力发电机组 / 混合系统 / 复现器 / 装备测试

Key words

offshore wind turbines / hybrid systems / simulator / equipment testing

引用本文

导出引用
梁泽浩, 田新亮, 温斌荣, 彭志科, 李欣, 武广兴. 面向浮式风力机组混合模型试验的多通道载荷复现器设计与性能测试[J]. 太阳能学报. 2023, 44(6): 413-419 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0191
Liang Zehao, Tian Xinliang, Wen Binrong, Peng Zhike, Li Xin, Wu Guangxing. MULTI-CHANNEL AERODYNAMIC LOAD SIMULATOR FOR FLOATING WIND TURBINE HYBRID MODEL TESTS: DEVELOPMENT AND TEST[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 413-419 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0191
中图分类号: TM614   

参考文献

[1] 侯梅芳, 潘松圻, 刘翰林. 世界能源转型大势与中国油气可持续发展战略[J]. 天然气工业, 2021, 41(12): 9-16.
HOU M F, PAN S Q, LIU H L.World energy trend and China’s oil and gas sustainable development strategies[J]. Natural gas industry, 2021, 41(12): 9-16.
[2] 王富贵, 廖晓东. 我国风电产业与核心技术未来发展趋势分析[J]. 现代经济信息, 2016(15): 376-377, 379.
WANG F G, LIAO X D.Analysis on the future development trend of China’s wind power industry and core technology[J]. Modern economic information, 2016(15): 376-377, 379.
[3] HUIJS F, DE RIDDER E J, SAVENIJE F. Comparison of model tests and coupled simulations for a semi-submersible floating wind turbine[C]//33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, USA, 2014.
[4] 李晨阳, 张昱, 张晓键, 等. 浮式海上风机平台设计及有限元分析[J]. 焦作大学学报, 2013, 27(1): 73-75.
LI C Y, ZHANG Y, ZHANG X J, et al.Analysis on floating offshore wind turbine design and finite element[J]. Journal of Jiaozuo University, 2013, 27(1): 73-75.
[5] 张火明, 杨建民, 肖龙飞. 深海平台混合模型试验方法应用技术研究[J]. 中国海洋平台, 2006, 21(1): 16-19.
ZHANG H M, YANG J M, XIAO L F.Investigation on application of the hybrid model testing technique for deep sea platforms[J]. China offshore platform, 2006, 21(1): 16-19.
[6] 郭子伟, 孟龙, 赵永生, 等. 海上浮式风机水池模型试验方法及其研究进展[J]. 中国海洋平台, 2016, 31(6): 1-8, 14.
GUO Z W, MENG L. ZHAO Y S, et al.Development and method of the offshore floating wind turbines wave-tank model test[J]. China offshore platform, 2016, 31(6): 1-8, 14.
[7] 胡志强. 浮式风机动力响应分析关键技术综述[J]. 船舶与海洋工程, 2020, 36(6): 1-13.
HU Z Q.A review on the key technologies of dynamic response prediction of floating offshore wind turbines[J]. Journal of shipping and ocean engineering, 2020, 36(6): 1-13.
[8] OTTER A, MURPHY J, PAKRASHI V, et al.A review of modelling techniques for floating offshore wind turbines[J]. Wind energy, 2022, 25(5): 831-857.
[9] KOO B,GOUPEE A J,LAMBRAKOS K, et al.Model test correlation study for a floating wind turbine on a tension leg platform[C]//Proceedings of the ASME 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, 2013.
[10] WEN B R, LI Z W, JIANG Z H, et al.Blade loading performance of a floating wind turbine in wave basin model tests[J]. Ocean engineering, 2020, 199: 107061.
[11] WEN B R, LI Z W, JIANG Z H, et al.Experimental study on the tower loading characteristics of a floating wind turbine based on wave basin model tests[J]. Journal of wind engineering and industrial aerodynamics, 2020, 207: 104390.
[12] MAKE M, VAZ G.Analyzing scaling effects on offshore wind turbines using CFD[J]. Renewable energy, 2015, 83: 1326-1340.
[13] FOWLER M J,KIMBALL R W,THOMAS III D A, et al. Design and testing of scale model wind turbines for use in wind/wave basin model tests of floating offshore wind turbines[C]//Proceedings of the ASME 32nd International Conference on Ocean, Offshore and Arctic Engineering,Nantes, France, 2013.
[14] LE BOULLUEC M,OHANA J,MARTIN A, et al.Tank testing of a new concept of floating offshore wind turbine[C]//Proceedings of the ASME 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, 2013.
[15] GUEYDON S, BAYATI I, DE RIDDER E.Discussion of solutions for basin model tests of FOWTs in combined waves and wind[J]. Ocean engineering, 2020, 209: 107288.
[16] BOZONNET P, CAILLÉ F, BLONDEL F, et al.A focus on fixed wind turbine tests to improve coupled simulations of floating wind turbine model tests[C]//Proceedings of the Twenty-seventh International Ocean and Polar Engineering Conference (ISOPE-2017), San Francisco, USA, 2017.
[17] WEN B R, TIAN X L, DONG X J, et al.Design approaches of performance-scaled rotor for wave basin model tests of floating wind turbines[J]. Renewable energy, 2020, 148: 573-584.
[18] RODDIER D, CERMELLI C, AUBAULT A, et al.WindFloat: a floating foundation for offshore wind turbines[J]. Journal of renewable and sustainable energy, 2010, 2(3): 033104.
[19] LING W, ZHEN G, MOAN T, et al.Comparative experimental study of the survivability of a combined wind and wave energy converter in two testing facilities[J]. Ocean engineering, 2016, 111: 82-94.
[20] SARMIENTO J, ITURRIOZ A, AYLLÓN V, et al. Experimental modelling of a multi-use floating platform for wave and wind energy harvesting[J]. Ocean engineering, 2019, 173: 761-773.
[21] MATHA D, SANDNER F, MOLINS C, et al.Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design[J]. Philosophical transactions of the Royal Society A: mathematical, physical and engineering sciences, 2015, 373(2035): 20140350.
[22] AZCONA J, BOUCHOTROUCH F, GONZáLEZ M, et al. Aerodynamic thrust modelling in wave tank tests of offshore floating wind turbines using a ducted fan[C]// The Science of Making Torque from Wind (TORQUE 2014), Copenhagen, Denmark, 2014.
[23] SAUDER T, CHABAUD V, THYS M, et al.Real-time hybrid model testing of a braceless semi-submersible wind turbine: part Ⅰ—the hybrid approach[C]//35th International Conference on Ocean, Offshore and Arctic Engineering, Busan, South Korea, 2016.
[24] BACHYNSKI E E, THYS M, SAUDER T, et al.Real-time hybrid model testing of a braceless semi-submersible wind turbine: part Ⅱ—experimental result[C]//35th International Conference on Ocean, Offshore and Arctic Engineering, Busan, South Korea, 2016.
[25] BERTHELSEN P A, BACHYNSKI E E, KARIMIRAD M, et al.Real-time hybrid model tests of a braceless semi-submersible wind turbine: part Ⅲ—calibration of a numerical model[C]//35th International Conference on Ocean, Offshore and Arctic Engineering, Busan, South Korea, 2016.
[26] URBÁN A M, GUANCHE R. Wind turbine aerodynamics scale-modeling for floating offshore wind platform testing[J]. Journal of wind engineering and industrial aerodynamics, 2019, 186: 49-57.
[27] OTTER A, MURPHY J, DESMOND C. Emulating aerodynamic forces and moments for hybrid testing of floating wind turbine models[C]//The Science of Making Torque from Wind(TORQUE2020), The Netherlands(online), 2020.
[28] AZCONA J, BOUCHOTROUCH F, VITTORI F.Low-frequency dynamics of a floating wind turbine in wave tank-scaled experiments with SiL hybrid method[J]. Wind energy, 2019, 22(10): 1402-1413.
[29] PEGALAJAR J A, BREDMOSE H, BORG M, et al.State-of-the-art model for the LIFES50+ OO-Star wind floater semi 10 MW floating wind turbine[C]//EERA DeepWind'2018, 15th Deep Sea Offshore Wind R&D Conference, Trondheim, Norway, 2018.
[30] BAK C, ZAHLE F, BITSCHE R, et al.The DTU 10-MW reference wind turbine[C]// Danish Wind Power Research 2013, Fredericia, Denmark, 2013.

基金

国家自然科学基金(12102251; U20A20328); 海南省科技计划三亚崖州湾科技城联合项目(120LH050); 国家自然科学基金创新研究群体项目(12121002)

PDF(2753 KB)

Accesses

Citation

Detail

段落导航
相关文章

/