烘焙条件对生物油蒸馏残渣理化性质及气化活性的影响

黄一滔, 刁瑞, 王储, 朱锡锋

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 523-531.

PDF(2949 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2949 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 523-531. DOI: 10.19912/j.0254-0096.tynxb.2022-0194

烘焙条件对生物油蒸馏残渣理化性质及气化活性的影响

  • 黄一滔, 刁瑞, 王储, 朱锡锋
作者信息 +

INFLUENCE OF TORREFACTION CONDITIONS ON PHYSICOCHEMICAL PROPERTY AND GASIFICATION REACTIVITY OF BIO-OIL DISTILLATION RESIDUE

  • Huang Yitao, Diao Rui, Wang Chu, Zhu Xifeng
Author information +
文章历史 +

摘要

利用傅里叶变换红外光谱仪(FT-IR)和X射线衍射仪(XRD)探究烘焙预处理技术对生物油蒸馏残渣理化性质的影响,并通过热重分析仪(TGA)表征生物油蒸馏残渣及其烘焙样品的气化活性和动力学演变。结果表明,250 ℃的烘焙温度能提升样品中烃类和芳香类物质的含量,225 ℃的烘焙温度有利于样品气化活性的提升。当烘焙滞留时间为1 h时,样品内芳香结构呈无序态,表现出更强的气化活性。烘焙气氛对生物油蒸馏残渣气化活性影响较小,但会显著改变官能团组成,空气气氛可明显增加样品内羟基含量,并抑制烃基和芳香类物质的生成。二氧化碳气氛可增加烃基含量,而氮气气氛下样品生成更多大芳环结构。此外,通过3种动力学模型对样品气化动力学分析,结果表明3种模型均能较好地模拟出各类样品的气化曲线,其中随机孔隙模型的拟合效果最好。

Abstract

The effect of torrefaction technique on physicochemical properties and carbonaceous structures of bio-oil distillation residues was investigated by Fourier transform infrared spectroscopy(FTIR) and X-ray diffraction (XRD), and a thermogravimetric analyzer(TGA) was used to characterized the gasification reactivity and kinetic evaluation of samples. The results indicate that torrefaction temperature at 250 ℃ enhances the content of hydrocarbons and aromatics, and torrefaction temperature at 225 ℃ is conducive to increasing the gasification reactivity of samples. When torrefaction residence time is 1 h, the aromatic structures in the sample is disordered, showing a stronger gasification reactivity. Torrefaction atmospheres affects the gasification reactivity of samples slightly, but has a significant influence on the composition of the functional groups. Air atmosphere increases the content of hydroxyl groups and reduces the content of hydrocarbon groups, and inhibits the generation of aromatics. CO2 atmosphere increases the hydrocarbon content, and N2 atmosphere induces the formation of more large aromatic rings. Furthermore, the sample gasification kinetics is analyzed by three kinetic models. It indicates that the simulated gasification curves of various sample under three models fits experimental data well, among which RPM fits best.

关键词

生物质 / 蒸馏残渣 / 生物油 / 理化性质 / 气化活性 / 动力学分析

Key words

biomass / distillation residue / bio-oil / physicochemical property / gasification reactivity / kinetic analysis

引用本文

导出引用
黄一滔, 刁瑞, 王储, 朱锡锋. 烘焙条件对生物油蒸馏残渣理化性质及气化活性的影响[J]. 太阳能学报. 2023, 44(6): 523-531 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0194
Huang Yitao, Diao Rui, Wang Chu, Zhu Xifeng. INFLUENCE OF TORREFACTION CONDITIONS ON PHYSICOCHEMICAL PROPERTY AND GASIFICATION REACTIVITY OF BIO-OIL DISTILLATION RESIDUE[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 523-531 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0194
中图分类号: TK6   

参考文献

[1] YU J, MALIUTINA K, TAHMASEBI A.A review on the production of nitrogen-containing compounds from microalgal biomass via pyrolysis[J]. Bioresource technology, 2018, 270: 689-701.
[2] 马善为, 张一鸣, 朱锡锋, 等. 生物质热解分级冷凝制备多品级生物油[J]. 太阳能学报, 2018, 39(5): 1367-1372.
MA S W,ZHANG Y M,ZHU X F,et al.Fractional condensation of biomass pyrolysis gas for multi-quality bio-oils[J]. Acta energiae solaris sinica,2018, 39(5): 1367-1372.
[3] ELKASABI Y, MULLEN C A, BOATENG A A.Distillation and isolation of commodity chemicals from bio-oil made by tail-gas reactive pyrolysis[J]. ACS sustainable chemistry & engineering, 2014, 2(8): 2042-2052.
[4] 杨耀钧, 刁瑞, 朱锡锋,等. 不同金属氧化物对重质生物油再裂解的比较性研究[J]. 化工学报, 2021, 72(11): 5820-5830.
YANG Y J,DIAO R, ZHU X F,et al.Catalytic effect of different metal oxides on pyrolysis behaviors of heavy bio-oil: a comparative study[J]. CIESC journal, 2021, 72(11): 5820-5830.
[5] 朱锡锋, 陆强, 郑冀鲁, 等. 生物质热解与生物油的特性研究[J]. 太阳能学报, 2006, 27(12): 1285-1289.
ZHU X F, LU Q, ZHENG J L, et al.Research on biomass pyrolysis and bio-oil characteristics[J]. Acta energiae solaris sinica, 2006, 27(12): 1285-1289.
[6] 朱谢飞, 张一鸣, 朱锡锋, 等. 生物油蒸馏残渣热解特性研究[J]. 太阳能学报, 2019, 40(4): 1114-1119.
ZHU X F, ZHANG Y M, ZHU X F, et al.Research on pyrolysis characteristics of bio-oil distillation residues[J]. Acta energiae solaris sinica, 2019, 40(4): 1114-1119.
[7] CHEN W H, LIN B J, LIN Y Y, et al.Progress in biomass torrefaction: principles, applications and challenges[J]. Progress in energy and combustion science, 2021, 82: 100887.
[8] LI R X, WU C L, ZHU L, et al.Regulation of the elemental distribution in biomass by the torrefaction pretreatment using different atmospheres and its influence on the subsequent pyrolysis behaviors[J]. Fuel processing technology, 2021, 222: 106983.
[9] FENG Y P, QIU K Y, ZHANG Z P, et al.Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program[J]. Energy, 2022, 239: 122228.
[10] RECARI J, BERRUECO C, PUY N, et al.Torre-faction of a solid recovered fuel (SRF) to improve the fuel properties for gasification processes[J]. Applied energy, 2017, 203: 177-188.
[11] NIU Y Q, LYU Y, LEI Y, et al.Biomass torrefaction: properties, applications, challenges, and economy[J]. Renewable and sustainable energy reviews, 2019, 115: 109395.
[12] LI S Q, SONG H, HU J H, et al.CO2 gasification of straw biomass and its correlation with the feedstock characteristics[J]. Fuel, 2021,297:120780.
[13] 朱谢飞. 生物油蒸馏残渣理化性质及其共热解实验研究[D]. 合肥: 中国科学技术大学, 2020.
ZHU X F.Experimental study on physicochemical properties and co-pyrolysis of bio-oil distillation residue[D]. Hefei:University of Science and Technology of China, 2020.
[14] DIAO R, ZHU X F, WANG C, et al.Synergistic effect of physicochemical properties and reaction temperature on gasification reactivity of walnut shell chars[J]. Energy conversion and management, 2020, 204: 112313.
[15] ZHU X F, LI K, WU X, et al.Comparative study on the evolution of physicochemical characteristics of biochar produced from bio-oil distillation residue under different induction atmosphere[J]. Energy conversion and management, 2018, 157: 288-293.
[16] ZHU X F, DIAO R, LUO Z J, et al.Combining torrefaction pretreatment and co-pyrolysis to upgrade biochar derived from bio-oil distillation residue and walnut shell[J]. Energy conversion and management, 2019, 199: 111970.
[17] 董倩, 张海霞, 朱治平. 3种煤焦的CO2气化反应特性及动力学模型[J]. 煤炭学报, 2015, 40(9): 2193-2199.
DONG Q, ZHANG H X, ZHU Z P.CO2 gasification characteristics and dynamic models of three coal chars[J]. Journal of China Coal Society, 2015, 40(9): 2193-2199.
[18] LI M F, CHEN C Z, LI X, et al.Torrefaction of bamboo under nitrogen atmosphere: influence of temperature and time on the structure and properties of the solid product[J]. Fuel, 2015, 161: 193-196.
[19] DIAO R, YUAN X H, ZHU X F, et al.Thermo-gravimatric investigation on the effect of reaction temperature and blend ratio on co-gasification characteristics of pyrolytic oil distillation residue with biochar[J]. Bioresource technology, 2020, 309: 123360.
[20] TANNER J, BHATTACHARYA S.Kinetics of CO2 and steam gasification of Victorian brown coal chars[J]. Chemical engineering journal,2016, 285: 331-340.
[21] 肖瑞瑞, 陈雪莉, 于广锁, 等. 生物质半焦CO2气化反应动力学研究[J]. 太阳能学报, 2012, 33(2): 236-242.
XIAO R R,CHEN X L,YU G S, et al.Research on kinetics characteristics of gasification biomass semi-char with CO2[J]. Acta energiae solaris sinica, 2012, 33(2): 236-242.
[22] ÁLVAREZ A, PIZARRO C, GARCÍA R, et al. Determina-tion of kinetic parameters for biomass combustion[J]. Bioresource technology, 2016, 216: 36-43.

基金

国家重点研发计划(2018YFB1501404)

PDF(2949 KB)

Accesses

Citation

Detail

段落导航
相关文章

/