基于圆形护圈调整桩基局部流场,护圈开孔进一步交换上下两侧水体,降低结构振动并减少桩基冲刷深度,从而维持风力机的正常运行。为验证开孔护圈的防护效果,开展不同开孔型式护圈防护下的单桩基础冲刷物理模型试验。通过设计9种不同型式的开孔护圈,探究护圈开孔形态、开孔数量和开孔位置对防护性能的影响。结果表明:护圈改变桩基边缘冲刷形态,护圈开孔可提高桩基前期冲刷速率;相比传统护圈,内侧开孔护圈和外侧开孔护圈防护效果较差,而中间开孔护圈可进一步减小单桩基础周围冲刷深度,并控制冲刷深度不均匀性,提升护圈防护效果。
Abstract
The local flow field around a pile foundation can be adjusted using a circular collar, which when perforated, facilitates the exchange of water between the upper and lower sides, thereby reducing structural vibrations and minimizing scour depth, ultimately maintaining the proper operation of wind turbines. To investigate the effectiveness of perforated collars as scour protection measures, physical model experiments were conducted on monopile foundation with various collar perforation patterns. Nine different collar perforation patterns were designed to explore the effects of perforation pattern, number, and location on the protection performance. The results indicate that the collar alters the scour pattern around the pile foundation, and collar perforation can increase the initial scour rate. Compared with traditional collars,collars perforated on the inner and outer sides exhibit lower protection effectiveness, while a perforated collar with perforations in the middle can further reduce the scour depth and control the unevenness of scour depth, thereby enhancing the protection performance.
关键词
海上风力机 /
桩基础 /
冲刷 /
水槽 /
开孔护圈
Key words
offshore wind turbines /
pile foundations /
scour /
flume /
perforated collar
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘超, 孙文, 张积乐, 等. 海上风电场单桩基础结构冲刷实验研究[J]. 太阳能学报, 2016, 37(2): 316-321.
LIU C, SUN W, ZHANG J L, et al.Experimental investigation for scour of monopile foundation structure of offshore wind turbines[J]. Acta energiae solaris sinica, 2016, 37(2): 316-321.
[2] 王鑫, 林鹏, 陈晓路, 等. 如东海上风力机组基础冲刷机理数值模拟研究[J]. 太阳能学报, 2021, 42(12): 239-244.
WANG X, LIN P, CHEN X L, et al.Numerical simulation on scour mechanism of Rudong offshore turbine foundation[J]. Acta energiae solaris sinica, 2021, 42(12): 239-244.
[3] 刘润, 王迎春, 汪嘉钰, 等. 单侧冲刷对海上风电筒型基础稳定性影响研究[J]. 太阳能学报, 2022, 43(1): 73-79.
LIU R, WANG Y C, WANG J Y, et al.Researh on effects of unilateral erosion on stability of offshore wind bucket foundation[J]. Acta energiae solaris sinica, 2022, 43(1): 73-79.
[4] 陈静, 田德, 闫肖蒙, 等. 局部冲刷作用下海上风电机组支撑结构响应[J]. 太阳能学报, 2019, 40(5): 1401-1407.
CHEN J, TIAN D, YAN X M, et al.Support structure response of offshore wind turbines under local scour[J]. Acta energiae solaris sinica, 2019, 40(5): 1401-1407.
[5] WANG C, YU X, LIANG F Y.A review of bridge scour: mechanism, estimation, monitoring and countermeasures[J]. Natural hazards, 2017, 87(3): 1881-1906.
[6] XIE L Q, YU Y L, LI H S, et al.Experimental investigation of local scour protection using cuboid pore structures[J]. Iranian journal of science and technology, transactions of civil engineering, 2022, 46(5): 3895-3904.
[7] YANG B, WEI K X, YANG W X, et al.A feasibility study for using fishnet to protect offshore wind turbine monopile foundations from damage by scouring[J]. Applied sciences, 2019, 9(23): 5023.
[8] TANG Z H, MELVILLE B, SINGHAL N, et al.Countermeasures for local scour at offshore wind turbine monopile foundations: a review[J]. Water science and engineering, 2022, 15: 15-28.
[9] MCGOVERN D J, ILIC S, FOLKARD A M, et al.Evolution of local scour around a collared monopile through tidal cycles[C]//International Conference on Coastal Engineering (ICCE), Santande, Cantabria, 2012.
[10] 魏凯, 王顺意, 裘放, 等. 海上风电单桩基础海流局部冲刷及防护试验研究[J]. 太阳能学报, 2021, 42(9): 338-343.
WEI K, WANG S Y, QIU F, et al.Experimental study on local scour and its protection of offshore wind turbine monopile under ocean current[J]. Acta energiae solaris sinica, 2021, 42(9): 338-343.
[11] PANDEY M, AZAMATHULLA H M, CHAUDHURI S, et al.Reduction of time-dependent scour around piers using collars[J]. Ocean engineering, 2020, 213: 107692.
[12] WANG S Y, WEI K, SHEN Z H, et al.Experimental investigation of local scour protection for cylindrical bridge piers using anti-scour collars[J]. Water, 2019, 11(7): 1515.
[13] JAHANGIRZADEH A, BASSER H, AKIB S, et al.Experimental and numerical investigation of the effect of different shapes of collars on the reduction of scour around a single bridge pier[J]. PloS one, 2014, 9(2): e98592.
[14] CHEN S C, TFWALA S, WU T Y, et al.A hooked-collar for bridge piers protection: flow fields and scour[J]. Water, 2018, 10(9): 1251.
[15] VALELA C, NISTOR I, RENNIE C D, et al.Hybrid modeling for design of a novel bridge pier collar for reducing scour[J]. Journal of hydraulic engineering, 2021, 147(5): 04021012.
[16] ATAIE ASHTIANI B, BEHESHTI A A.Experimental investigation of clear-water local scour at pile groups[J]. Journal of hydraulic engineering, 2006, 132(10): 1100-1104.
[17] MELVILLE B W, CHIEW Y M.Time scale for local scour at bridge piers[J]. Journal of hydraulic engineering, 1999, 125(1): 59-65.
[18] 马丽丽. 跨海桥梁桩基础局部冲刷演化特征试验研究[D]. 杭州: 浙江大学, 2018.
MA L L.Experimental investigation on scour development around the pile foundation of the sea-crossing bridge[D]. Hangzhou: Zhejiang University, 2018.
[19] ZHU Y H, XIE L Q, WONG T M, et al.Visualization of the onset of scour under a pipeline in waves[J]. Applied sciences, 2020, 10(9): 2994.
[20] ZHU Y H, XIE L Q, SU T C.Visualization tests on scour rates below pipelines in steady currents[J]. Journal of hydraulic engineering, 2019, 145(4): 4019005.
[21] MOGHANLOO M, VAGHEFI M, GHODSIAN M.Experimental study on the effect of thickness and level of the collar on the scour pattern in 180° sharp bend with bridge pier[J]. Iranian journal of science and technology, transactions of civil engineering, 2020, 44(5): 1-19.
[22] CHIEW Y M.Scour protection at bridge piers[J]. Journal of hydraulic engineering, 1992, 118(9): 1260-1269.
基金
国家自然科学基金面上项目(51479137)