采用ANSYS-AQWA软件建立三边型兆瓦级波浪能装置及其锚泊系统分析模型,计算正常完整状态和锚泊线断裂1根状态下装置和锚链的动力特性,分析聚酯缆绳的刚度、环境入射角及平台锚链的出链长度对锚泊系统的最小安全系数的影响。结果表明:锚泊系统的最大张力受聚酯缆绳动态刚度的影响显著;当采用锚泊线初始构成方案时,对于部分环境入射角,锚泊系统的最小安全系数不满足规范要求,但通过调整平台锚链的出链长度,使得在正常完整状态和有1根锚泊线断裂状态下均满足相应规范要求。最后,根据计算分析对工程上的布置设计提出建议,从而在保证锚泊系统可靠性的同时提高整体工程的经济性。
Abstract
The analysis model of the trilateral type megawatt wave energy converter (MWEC) and its mooring system was established by using the ANSYS-AQWA software. The dynamic characteristics of the MWEC and mooring lines were calculated under normal intact state and one of mooring lines broken state, and the effects of the stiffness of polyester rope, environmental incident angle, and the length of platform chain on the minimum safety factor of the mooring system were analyzed. The numerical results show that the maximum tension of mooring system is significantly affected by the dynamic stiffness of the polyester rope. When the initial composition of mooring line is adopted, the minimum safety factor of the mooring system does not meet the requirements of the API RP 2SK code for some environmental incident angles. However, by adjusting the length of the platform chain, it can meet the requirements of the API RP 2SK code both in the normal intact state and in the broken state of one anchor line. Finally, according to the calculation and analysis, some suggestions are put forward for engineering design, so as to ensure the reliability of the mooring system and improve the economy of the whole project.
关键词
波浪能转换 /
半潜平台 /
水动力学 /
聚酯缆 /
系泊链 /
失效
Key words
wave energy conversion /
semi-submersible platform /
hydrodynamics /
polyester rope /
mooring cables /
failure
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BROOKE J.Wave energy conversion[M]. Amsterdam: Elsevier, 2003: 27-35.
[2] 史宏达, 刘臻. 海洋波浪能研究进展及发展趋势[J]. 科技导报, 2021, 39(6): 22-28.
SHI H D, LIU Z.Research status and development tendency of ocean wave energy[J]. Science & technology review, 2021, 39(6): 22-28.
[3] 周鸿博, 周道成, 任年鑫, 等. 基于张力腿平台风能-波浪能集成结构系统动力分析[J]. 太阳能学报, 2021, 42(8): 343-348.
ZHOU H B, ZHOU D C, REN N X, et al.Coupled dynamic analysis of a combined wind-wave energy system based on a tension leg platform[J]. Acta energiae solaris sinica, 2021, 42(8): 343-348.
[4] 郭权势, 邓争志, 王晓亮, 等. 垂荡双气室振荡水柱波能装置水动力特性研究[J]. 力学学报, 2021, 53(9): 2515-2527.
GUO Q S, DENG Z Z, WANG X L, et al.Hydrodynamics of a dual-chamber OWC wave energy converter in heaving motion[J]. Chinese journal of theoretical and applied mechanics, 2021, 53(9): 2515-2527.
[5] 盛松伟, 张亚群, 王坤林, 等. “鹰式一号”波浪能发电装置研究[J]. 船舶工程, 2015, 37(9): 104-108.
SHENG S W, ZHANG Y Q, WANG K L, et al.Research on wave energy converter sharp eagle I[J]. Ship engineering, 2015, 37(9): 104-108.
[6] 王文胜, 游亚戈, 盛松伟, 等. 鹰式二号波浪能装置的频域动态响应计算与负载优化设计[J]. 太阳能学报, 2021, 42(2): 289-294.
WANG W S, YOU Y G, SHENG S W, et al.Frequency domain dynamic response calculation and hydraulic damping optimal design of wave energy conversion sharp eagle II[J]. Acta energiae solaris sinica, 2021, 42(2): 289-294.
[7] 张亚群, 盛松伟, 游亚戈, 等. 100 kW一基多体漂浮鹰式波浪能发电装置模型试验研究[J]. 海洋技术学报, 2014, 33(4): 73-80.
ZHANG Y Q, SHENG S W, YOU Y G, et al.Experimental study on a 100 kW one-base multi-buoy floating “sharp eagle” wave energy converter[J]. Journal of ocean technology, 2014, 33(4): 73-80.
[8] 盛松伟, 王坤林, 吝红军, 等. 100 kW鹰式波浪能发电装置“万山号”实海况试验[J]. 太阳能学报, 2019, 40(3): 709-714.
SHENG S W, WANG K L, LIN H J, et al.Open sea tests of 100 kW wave energy convertor sharp eagle Wanshan[J]. Acta energiae solaris sinica, 2019, 40(3): 709-714.
[9] HUANG S, SHENG S W, YOU Y G, et al. Design study of a novel flex mooring system of the floating wave energy converter in ultra-shallow water[C]//Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference, Kona, Hawaii, USA, 2015.
[10] 黄硕, 盛松伟, 游亚戈, 等. 超浅水浮式波浪能发电装置弹性系泊系统及水动力性能的数值与模型试验研究[J]. 太阳能学报, 2019, 40(3): 715-723.
HUANG S, SHENG S W, YOU Y G, et al.Numerical and model research on flex mooring system and hydrodynamic performance of floating wave energy converter in ultra-shallow water[J]. Acta energiae solaris sinica, 2019, 40(3): 715-723.
[11] 施伟, 郑侃, 任年鑫. 南海海况下半潜浮式风机在故障工况下的动力学响应分析[J]. 南方能源建设, 2018, 5(4): 12-20.
SHI W, ZHENG K, REN N X.Dynamic analysis of semi-type floating offshore wind turbine with failure conditions under metocean conditions in South China Sea[J]. Southern energy construction, 2018, 5(4): 12-20.
[12] 罗宁. 南海半潜式平台锚泊系统动力破坏与走锚失效研究[D]. 青岛: 中国石油大学, 2017.
LUO N.Study on dynamic damage and anchor failure of semi-submersible platform mooring system in South China Sea[M]. Qingdao: China University of Petroleum, 2017.
[13] 安筱婷. 锚泊系统局部失效模式下的浮式平台动力特性研究[D]. 上海: 上海交通大学, 2020.
AN X T.Research on dynamic characteristics of floating platform with partial failure of mooring system[D]. Shanghai: Shanghai Jiao Tong University, 2020.
[14] 蔡元浪, 张广磊, 杨小龙, 等. 国产聚酯缆性能评估及其在陵水17-2气田“深海一号”能源站的适用性研究[J]. 中国海上油气, 2021, 33(3): 189-192.
CAI Y L, ZHANG G L, YANG X L, et al.Performance of evaluation of domestic polyester rope and its applicability research in “Deep Sea No.1” energy station in LS17-2 gas field[J]. China offshore oil and gas, 2021, 33(3): 189-192.
[15] 陈瑞祥, 张火明, 陆萍蓝, 等. 浮式风机聚酯系泊系统动力响应及优化[J]. 中国计量大学学报, 2021, 32(3): 347-354.
CHEN R X, ZHANG H M, LU P L, et al.Dynamic response and optimization to polyester mooring systems for wind turbine platforms[J]. Journal of China University of Metrology, 2021, 32(3): 347-354.
[16] DNV-OS-E302, Offshore mooring chain[S].
[17] TZZB0313—2018, 深海系泊聚酯缆绳[S].
TZZB0313—2018, Ropes for deep-sea mooring-polyester[S].
[18] FRANÇOIS M, DAVIES P. Characterization of polyester mooring lines[C]//ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 2008:169-177.
[19] API Recommended Practice 2SK, Design and analysis of stationkeeping systems for floating structures[S].
基金
国家重点研发计划(2019YFB1504403); 中国南方电网有限责任公司科技项目(GDKJXM20201976)