基于NREL 5 MW单桩基础海上风力机,考虑桩土相互作用,建立包括冰与海上风力机结构的三维精细化相互作用有限元模型,考虑冰与结构的耦合作用,运用ANSYS/LS-DYNA开展海上风力机在风-冰联合作用下损伤分析与动力响应研究,并针对结构损伤变形提出面积受损率用于评估海上风力机的损伤程度,探讨不同冰厚对海上风力机结构损伤和动力特性的影响。结果显示,随着冰厚的增加,动冰力平均值、峰值均增加,海上风力机动力响应增大。相比于海上风力机结构其他区域,基础结构接触面处损伤最大。通过该文提出的面积受损率可合理反映海上风力机在不同冰厚作用下的损伤程度,冰厚不仅会影响单桩基础的面积受损率,还会影响受损率的线性变化速度。
Abstract
Based on the NREL-5 MW monopile offshore wind turbine(OWT), considering the pile-soil interaction, a three-dimensional finite element model of the interaction between ice and offshore wind turbine structure is established. Considering the coupling effect of ice and structure interaction, the damage assessment and dynamic analysis of OWT combined wind and sea ice loads is carried out in ANSYS/LS-DYNA. The area damage ratio is suggested to evaluate the damage of OWTs under dynamic ice loads. Meanwhile, the influence of sea ice thickness on the structural damage and response of OWT is explored. Based on the performed study, it can be seen that the mean value and peak value of dynamic ice force increase, and the dynamic response of offshore wind turbine increases significantly with the increasing of ice thickness. The most significant structural damage is observed at the sea ice impact area, by comparing with the damage of the remaining locations. The area damage rate proposed in this paper can reasonably reflect the damage degree of offshore wind turbines under the action of different ice thicknesses. Ice thicknesses not only affect the area damage rate of single pile foundation, but also affect the linear change rate of damage rate.
关键词
海上风力机 /
桩基础 /
面积受损率 /
动力响应 /
海冰
Key words
offshore wind turbines /
pile foundations /
area damage rate /
dynamic response /
sea ice
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] KIM E, AMDAHL J.Discussion of assumptions behind rule-based ice loads due to crushing[J]. Ocean engineering, 2016, 119: 249-261.
[2] 黄焱, 史庆增, 宋安. 冰破坏机理的试验研究[J]. 中国造船, 2003, 44(增刊): 379-386.
HUANG Y,SHI Q Z, SONG A.Experimental study on ice destruction mechanism[J]. Ship building of China, 2003, 44(Z): 379-386.
[3] 张希. 冰激直立结构稳态振动[D]. 大连: 大连理工大学, 2002.
ZHANG X.Steady vibration of ice-induced vertical structure[D]. Dalian:Dalian University of Technology, 2002.
[4] HENDRIKSE H, METRIKINE A.Ice-induced vibrations and ice buckling[J]. Cold regions science and technology, 2016, 131: 129-141.
[5] AKSENOV Y, HIBLER W D.Failure propagation effects in an anisotropic sea ice dynamics model[J]. IUTAM symposium on scaling laws in ice mechanics and ice dynamics, 2001, 94: 363-372.
[6] SOPPER R.The influence of water, snow and granular ice on ice failure processes, ice load magnitude and process pressure[J]. Cold regions science and technology, 2017, 139: 51-64.
[7] HUNKE E C, DUKOWICZ J.An elastic-viscous-plastic model for sea ice dynamics[J]. Journal of geophysical research atmospheres, 1999, 27: 1849-1867.
[8] 屈衍. 基于现场实验的海洋结构随机冰荷载分析[D]. 大连: 大连理工大学, 2006.
QU Y.Random ice load analysis on offshore structures based on field tests[D]. Dalian: Dalian University of Technology, 2006.
[9] 狄少丞, 季顺迎. 海冰与自升式海洋平台相互作用GPU离散元模拟[J]. 力学学报, 2014, 46(4): 561-571.
DI S C, JI S Y.GPU-based discrete element modelling of interaction between sea ice and jack-up platform structure[J]. Chinese journal of theoretical and applied mechanics, 2014, 46(4): 561-571.
[10] SHI W, TAN X, GAO Z.Numerical study of ice-induced loads and responses of a monopile-type offshore wind turbine in parked and operating conditions[J]. Cold regions science and technology, 2016, 123: 121-139.
[11] 黄焱, 马玉贤, 罗金平, 等. 渤海海域单柱三桩式海上风电结构冰激振动分析[J]. 海洋工程, 2016, 34(5): 1-10.
HUANG Y, MA Y X, LUO J P, et al.Analyses on ice induced vibrations of a tripod piled offshore wind turbine structure in Bohai Sea[J]. The ocean engineering, 2016, 34(5): 1-10.
[12] 叶柯华, 李春, 王渊博, 等. 湍流风与浮冰联合作用下近海风力机动力学响应[J]. 热能动力工程, 2019,34(9): 123-131.
YE K H, LI C, WANG Y B, et al.Dynamic response of offshore wind turbine under the combined load of turbulent wind and floating ice[J]. Journal of engineering for thermal energy and power, 2019, 34(9): 123-131.
[13] 叶柯华,李春,杨阳,等. 基于自激冰振的风力机海冰载荷分析[J]. 振动与冲击, 2017, 36(24):177-183.
YE K H, LI C, YANG Y, et al.Sea-ice load analysis of offshore wind turbines based on self-excited ice induced vibration[J]. Journal of vibration and shock, 2017, 36(24): 177-183.
[14] HEINONEN J, RISSANEN S.Coupled-crushing analysis of a sea ice-wind turbine interaction-feasibility study of FAST simulation software[J]. Ships and offshore structures, 2017, 12(8): 1056-1063.
[15] 朱本瑞, 孙超, 黄焱. 冰区海上单桩风力机振动响应与控制[J]. 振动与冲击, 2021, 40(9): 133-141.
ZHU B R, SUN C, HUANG Y.Vibration response and control of offshore monopile wind turbine in ice area[J]. Journal of vibration and shock, 2021, 40(9): 133-141.
[16] 郝二通. 海上风电机组结构抗船撞及抗震性能研究[D]. 大连: 大连理工大学, 2016.
HAO E T.Research on ship collision and seismic performance of offshore wind turbine structure[D]. Dalian:Dalian University of Technology, 2016.
[17] DING H Y, ZHU Q, ZHANG P Y.Dynamic simulation on collision between ship and offshore wind turbine[J]. Journal of Tianjin University, 2014, 20(1):1-6.
[18] LIU Z H, AMDAHL J, LØSET S. Plasticity based material modelling of ice and its application to ship-iceberg impacts[J]. Cold regions science and technology, 2012, 65(3): 326-334.
[19] GAO Y, HU Z Q, RINGSBERG J W.An elastic-plastic ice material model for ship-iceberg collision simulations[J]. Ocean engineering, 2015, 102: 27-39.
[20] GLADMAN B.LS-DYNA® keyword user’s manual, volumeⅡ, material models[R]. 2013.
[21] JONKMAN J, BUTTERFIELD S, MUSIAL W.Definition of a 5 MW reference wind turbine for offshore system development[R]. NREL/TP-500-38060, 2009.
[22] ZENG X M, SHI W, MICHAILIDES C,et al.Numerical and experimental investigation of breaking wave forces on a monopile-type offshore wind turbine[J]. Renewable energy, 2021, 175: 501-519.
[23] LIU C G, HAO E, ZHANG S B.Optimization and application of a crashworthy device for the monopile offshore wind turbine against ship impact[J]. Applied ocean research, 2015, 51: 129-137.
[24] KIM H, TKEDWARD K.Modaling hail ice impacts and predicting impact damage initiation in composite structures[J]. AIAA Journal, 2000, 7: 1278-1288.
[25] KELLY S C, DAVID J B, PAUL D B, et al.A high rate model with failure for ice in LS-DYNA[C]//9th International LS-DYNA Users Conference, Detroit, USA, 2006, 15: 1-16.
[26] JONKMAN B, KILCHER L.Turbsim user’s guide (draft version)[R]. NREL/TP-500-46198, 2012.
[27] IEC 61400-1:2012, Wind turbines (Part1): design requirements[S].
[28] JONKMAN J, MUSIAL W.Offshore code comparison collaboration (OC3) for IEA task 23 offshore wind technology and deployment[R]. NREL/TP-5000-48191, 2010.
[29] JI X, KARR D G, OTERKUS E.A non-simultaneous dynamic ice-structure interaction model[J]. Ocean engineering, 2018, 166: 278-289.
基金
国家自然科学基金(52071058; 51939002; 52071301); 浙江省自然科学基金(ZOE2020004); 辽宁省青年拔尖项目(XLYC1807208)