随着海上风电场规模不断扩大,离岸距离变远,传统的集中式海上变电站面临安装容量过大、建设困难等问题。针对以上问题,引入一种海上轻型变电站,提出基于海上轻型变电站的海上风电场电气系统博弈优化方法。建立基于海上轻型站的电气系统全寿命周期成本模型,提出适用于轻型变电站选址的改进k-medoids聚类方法,对不同电压等级的电气系统进行优化,并基于组合权重法和混合策略对规划方案进行多方博弈评估。以江苏省某海上风电场为例进行分析,结果表明,基于海上轻型站的电气系统博弈优化方案能有效提高海上风电场电气系统的综合性能。
Abstract
As the scale of offshore wind farms continues to expand and the offshore distance becomes farther, traditional centralized offshore substations are faced with the problems such as large installation capacity and construction difficulties. To solve the above problems, the offshore light substation is introduced, and a game optimization method for offshore wind farm electrical system based on offshore light substation is proposed. A life-cycle cost model of electrical system based on offshore light substation is established, an improved k-medoids clustering method applicable to the siting of light substations is proposed, the electrical system with different voltage levels is optimized, and multi-party game evaluation of the planning scheme is carried out based on combined weight method and mixed strategy. Taking an offshore wind farm in Jiangsu province as an example, the analysis results show that the game optimization scheme based on offshore light substation can effectively improve the comprehensive performance of offshore wind farm electrical system.
关键词
海上风电场 /
博弈论 /
聚类算法 /
电压等级优化 /
轻型变电站
Key words
offshore wind farms /
game theory /
clustering algorithms /
voltage level optimization /
light substation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 赵东来, 牛东晓, 杨尚东, 等. 基于改进遗传算法的海上风电场消纳拓扑结构优化模型[J]. 中南大学学报(自然科学版), 2019, 50(4): 998-1004.
ZHAO D L, NIU D X, YANG S D, et al.Optimizing model of topological structure for offshore wind farm absorption based on improved genetic algorithms[J]. Journal of Central South University(science and technology), 2019, 50(4): 998-1004.
[2] 汪惟源, 乔颖, 窦飞, 等. 基于改进遗传算法的海上风电场集电系统拓扑优化[J]. 中国电力, 2019, 52(1): 63-68.
WANG W Y, QIAO Y, DOU F, et al.Optimization of offshore wind farm collecter systems based on improved genetic algorithm[J]. Electric power, 2019, 52(1): 63-68.
[3] KAZMI S H H, LANERYD T, GIANNIKAS K, et al. Cost optimized dynamic design of offshore windfarm transformers with reliability and contingency considerations[J]. International journal of electrical power & energy systems, 2021, 128: 106684.
[4] CAO Y, LI Q J, TAN Y, et al.A comprehensive review of energy internet: basic concept, operation and planning methods, and research prospects[J]. Journal of modern power systems and clean energy, 2018, 6(3): 399-411.
[5] 凌峰, 汤昶烽, 卫志农. 全寿命周期成本在海上风电输电方式经济性评估中的应用[J]. 江苏电机工程, 2013, 32(5): 5-9, 12.
LING F, TANG C F, WEI Z N.The application of LCC in the economic evaluation of transmission means of the offshore wind power[J]. Jiangsu electrical engineering, 2013, 32(5): 5-9, 12.
[6] DUTTA S, OVERBYE T J.A clustering based wind farm collector system cable layout design[C]//2011 IEEE Power and Energy Conference at Illinois (PECI),IEEE, Urbana, IL, USA, 2011: 1-6.
[7] 乔可. 城市中压配电网无功规划[D]. 天津: 天津大学, 2007.
QIAO K.Reactive power planning of urban middle-voltage distribution network[D]. Tianjin: Tianjin University, 2007.
[8] 徐立亮, 胡仁祥, 张毅, 等. 基于K-means聚类算法的风电场机群划分方法[J]. 四川电力技术, 2015, 38(6): 72-75, 84.
XU L L, HU R X, ZHANG Y, et al.Partioning method of wind turbine grouping based on K-means clustering algorithm[J]. Sichuan electric power technology, 2015, 38(6): 72-75, 84.
[9] 林俐, 潘险险. 基于分裂层次半监督谱聚类算法的风电场机群划分方法[J]. 电力自动化设备, 2015, 35(2): 8-14.
LIN L, PAN X X.Wind turbine grouping based on semi-supervised split-hierarchical spectral clustering algorithm for wind farm[J]. Electric power automation equipment, 2015, 35(2): 8-14.
[10] 符杨, 徐涵璐, 黄玲玲. 海上风电场集电系统全寿命周期成本分析[J]. 电力系统自动化, 2016, 40(21): 161-167.
FU Y, XU H L, HUANG L L.Life-cycle cost analysis of power collection system in offshore wind farm[J]. Automation of electric power system, 2016, 40(21): 161-167.
[11] 符杨, 杨赛松, 魏书荣, 等. 考虑电磁环境约束的大型海上风电场集电网络拓扑博弈优化[J]. 电力系统自动化, 2019, 43(1): 201-208.
FU Y, YANG S S, WEI S R, et al.Game based topology optimization for power collection system of large-scale offshore wind farm considering electromagnetic environment constraints[J]. Automation of electric power system, 2019, 43(1): 201-208.
[12] 俞建, 贾文生. 有限理性研究的博弈论模型[J]. 中国科学: 数学, 2020, 50(9): 1375-1386.
YU J, JIA W S.Game model in the study of bounded rationalit[J]. Scientia sinica(mathematica), 2020,50(9): 1375-1386.
[13] 卢强, 陈来军, 梅生伟. 博弈论在电力系统中典型应用及若干展望[J]. 中国电机工程学报, 2014, 34(29): 5009-5017.
LU Q, CHEN L J, MEI S W.Typical application and prospects of game theory in power system[J]. Proceedings of the CSEE, 2014, 34(29): 5009-5017.
[14] 张忠会, 刘故帅, 谢义苗. 基于博弈论的电力系统供给侧多方交易决策[J]. 电网技术, 2017, 41(6): 1779-1785.
ZHANG Z H, LIU G S, XIE Y M.A game theory approach to analyzing multi-party electricity trading on supply side[J]. Power system technology, 2017, 41(6): 1779-1785.
[15] MEI S, WEI W, LIU F.On engineering game theory with its application in power systems[J]. Control theory and technology, 2017, 15(1): 1-12.
[16] ZHANG Z, LIU G, XIE Y, et al.A game theory approach to analyzing multi-party electricity trading on supply side[J]. Energies, 2017(6): 1779-1785.
[17] 张忠会, 赖飞屹, 谢义苗. 基于纳什均衡理论的电力市场三方博弈分析[J]. 电网技术, 2016, 40(12): 3671-3679.
ZHANG Z H, LAI F Y, XIE Y M.Analysis of trilateral game in electricity market based on nash equilibrium theory[J]. Power system technology, 2016, 40(12): 3671-3679.
基金
国家电网公司总部科技项目(远海岸规模化海上风电高效送出关键技术研究4000-202018044A-0-0-00)