固定式风电机组基础波浪能装置物理模型试验研究

高人杰, 史宏达, 李坚, 杨金培, 孙龙龙, 曹飞飞

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 454-460.

PDF(2927 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2927 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 454-460. DOI: 10.19912/j.0254-0096.tynxb.2022-0217

固定式风电机组基础波浪能装置物理模型试验研究

  • 高人杰1,2, 史宏达1,3,4, 李坚3, 杨金培1, 孙龙龙2, 曹飞飞1,4
作者信息 +

EXPERIMENTAL STUDY OF PHYSICAL MODEL OF WAVE ENERGY CONVERTERS ON FIXED WIND TURBINE FOUNDATION

  • Gao Renjie1,2, Shi Hongda1,3,4, Li Jian3, Yang Jinpei1, Sun Longlong2, Cao Feifei1,4
Author information +
文章历史 +

摘要

近年来,随着传统化石燃料消耗日益增多和环境保护问题日渐严峻,海上可再生能源的发展越来越受到重视,海上风能和波浪能利用技术成为研究热点。该文提出一种基于固定式四脚导管架海上风力机基础的振荡浮子式波浪能装置,从能量守恒角度进行理论分析,开展几何比尺1∶8的物理模型试验,研究海上风能和波浪能耦合利用的可行性,分析波浪能装置对风电机组基础周边波浪场的影响并总结规律。研究发现:应针对特定海域的波高和周期条件挑选合适的浮子,且单个侧面浮子比单个正面浮子的能量吸收率更高、对波浪场的遮蔽作用更明显,为海上风浪耦合利用提供了理论依据和设计参数。

Abstract

In recent years, the development of offshore renewable energy is receiving increasing attention, with the following consumption of the traditional fossil fuel and the increasing serious problems of environmental protection. Among these renewable energies, the offshore wind energy and wave energy are becoming the research focus. An oscillating buoy type wave energy converter based on fixed four-feet-jacket offshore wind turbine foundatio is proposed in this paper. Theoretical analysis is conducted from the perspective of energy conservation, and the physical model experiment of geometric scale 1∶8 has been carried out. According to the experiment, the preliminary feasibility are studied, and the effects on the surrounding wave field of wave energy converters are evaluated. The results indicate that appropriate buoys should be selected according to different wave heights and periods in specific areas, and the shielding effect on the wave field of single lateral buoy is higher than that of frontal one. These conclusions provide theoretical basis and design parameters for the coupling utilization of offshore wind and wave energy.

关键词

波浪能转换 / 海上风电机组 / 浮子 / 综合利用 / 固定式基础 / 能量守恒

Key words

wave energy conversion / offshore wind turbines / buoys / comprehensive utilization / fixed foundation / energy conservation

引用本文

导出引用
高人杰, 史宏达, 李坚, 杨金培, 孙龙龙, 曹飞飞. 固定式风电机组基础波浪能装置物理模型试验研究[J]. 太阳能学报. 2023, 44(6): 454-460 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0217
Gao Renjie, Shi Hongda, Li Jian, Yang Jinpei, Sun Longlong, Cao Feifei. EXPERIMENTAL STUDY OF PHYSICAL MODEL OF WAVE ENERGY CONVERTERS ON FIXED WIND TURBINE FOUNDATION[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 454-460 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0217
中图分类号: P743   

参考文献

[1] PEREZ-COLLAZO C, GREAVES D, IGLESIAS G.A review of combined wave and offshore wind energy[J]. Renewable and sustainable energy reviews, 2015, 42: 141-153.
[2] 周斌珍, 胡俭俭, 谢彬, 等. 风浪联合发电系统水动力学研究进展[J]. 力学学报, 2019, 51(6): 1641-1649.
ZHOU B Z, HU J J, XIE B, et al.Research progress in hydrodynamics of wind-wave combined power generation system[J]. Chinese journal of theoretical and applied mechanics, 2019, 51(6): 1641-1649.
[3] 熊舒浩. 用于风能与波浪能发电的液压传动系统设计与仿真研究[D]. 北京: 华北电力大学, 2016.
XIONG S H.Study on design and simulation of hydraulic transmission system applied for power generation from wind and wave energy[D]. Beijing: North China Electric Power University, 2016.
[4] SIEGFRIEDSEN S, LEHNHOFF M, PREHN A.Primary markets for offshore wind energy outside the European Union[J]. Wind engineering, 2003, 27: 419-430.
[5] 郑崇伟,苏勤,刘铁军. 1988—2010年中国海域波浪能资源模拟及优势区域划分[J]. 海洋学报,2013, 35(3): 104-111.
ZHENG C W, SU Q, LIU T J.Wave energy resources assessment and dominant area evaluation the China sea from 1988 to 2010[J]. Acta oceanologica sinica, 2013, 35(3): 104-111.
[6] 纪德恒. 海上风浪能耦合互补发电平台研究[D]. 青岛: 山东科技大学, 2017.
JI D H.Research of wind-wave energy coupling complementary generation platform[D]. Qingdao: College of Mechanical and Electronic Engineering, 2017.
[7] PEREZ-COLLAZO C, GREAVES D, IGLESIAS G.A novel hybrid wind-wave energy converter for jacket-frame substructures[J]. Energies, 2018, 11, 637.
[8] PEREZ-COLLAZO C, PEMBERTON R, GREAVES D, et al.Monopile-mounted wave energy converter for a hybrid wind-wave system[J]. Energy conversion and management, 2019, 199, 111971.
[9] MARQUIS L.Performance evaluation of the wavestar prototype [EB/OL]. http://wavestar-energy.com/concept, 2011.
[10] Green Ocean Energy.The green ocean energy Wave Treader Project, UK[EB/OL]. https://www.powertechnology.com/projects/greenocean-energywav/, 2011.
[11] SHI H D, HUANG S T, CAO F F.Hydrodynamic performance and power absorption of a multi-freedom buoy wave energy device[J]. Ocean engineering, 2019, 172: 541-549.
[12] 胡缘, 杨绍辉, 何宏舟, 等. 半潜式多浮体波浪能发电装置的水动力性能分析[J]. 水利发电学报,2019,38(9):91-101.
HU Y, YANG S H, HE H Z, et al.Hydrodynamic performance analysis of semi-submersible multi-body wave power plant[J]. Journal of hydro-electric engineering, 2019, 38(9): 91-101.
[13] 孙科, 谢光慈, 周斌珍. 波能装置浮子选型及水动力性能分析[J]. 哈尔滨工程大学学报, 2021, 42(1): 8-14.
SUN K, XIE G C, ZHOU B Z.Type selection and hydrodynamic performance analysis of wave energy converters[J]. Journal of Harbin Engineering University, 2021, 42(1): 8-14.
[14] 刘延俊, 王伟, 陈志, 等. 波浪能发电装置浮体形状参数对俘能性能影响[J]. 山东大学学报(工学版), 2020, 50(6): 1-8.
LIU Y J, WANG W, CHEN Z, et al.The influence of shape parameters of wave energy device floating body on energy capture characteristics[J]. Journal of Shandong University (engineering science), 2020, 50(6): 1-8.
[15] ZANG Z P, ZHANG Q H, QI Y, et al.Hydrodynamic responses and efficiency analyses of a heaving-buoy wave energy converter with PTO damping in regular and irregular waves[J]. Renewable energy, 2018, 116: 527-542.
[16] TAMPIER G, GRUETER L.Hydrodynamic analysis of a heaving wave energy converter[J]. International journal of marine energy, 2017, 19: 304-318.
[17] 赖文斌, 李德堂, 谢永和, 等. “海大1号”摇臂式波浪发电装置水动力性能研究[J]. 船舶力学,2021, 25(3):328-335.
LAI W B, LI D T, XIE Y H, et al.Research on hydrodynamic performance of “ Haida 1” rocker type wave power generator[J]. Journal of ship mechanics, 2021, 25(3): 328-335.
[18] GAO H, YU Y.The dynamics and power absorption of cone-cylinder wave energy converters with three degree of freedom in irregular waves[J]. Energy, 2018, 143: 833-845.
[19] 陈启东, 曹灿, 顾泽堃, 等. 基于AQWA的锥底振荡浮子水动力特性研究[J]. 工业仪表与自动化装置, 2019, 4: 3-6.
CHEN Q D, CAO C, GU Z K, et al.Research on hydrodynamic characteristics of conical bottom oscillating float based on AQWA[J]. Industrial instrumentation & automation, 2019, 4: 3-6.
[20] 孙巨才. 关于入、反射波高分离推算法实用问题的探讨[J]. 海岸工程, 1988, 7(1): 1-9.
SUN J C.Discussion on the practical problem calculation method for separating the incident and reflected wave heights[J]. Coastal engineering, 1988, 7(1): 1-9.

基金

山东省自然科学基金(ZR2021ZD23); 山东省重点研发计划(2019JZZY010902); 国家重点研发计划(2018YFB1501900); 泰山学者工程专项经费资助(ts20190914)

PDF(2927 KB)

Accesses

Citation

Detail

段落导航
相关文章

/