针对传统地下水源热泵空调(CGWHP)系统能耗偏高的缺陷,提出一种新型分级处理空调送风的地下水源热泵(NGWHP)系统,其特点是利用地下水预处理新风后,二级利用地下水承担热泵机组的冷凝热,达到显著降低热泵机组能耗的目的。运用热工学理论建立NGWHP系统稳态仿真数学模型,在VC++环境下编写程序并模拟供冷模式下NGWHP与CGWHP系统的性能,比较分析地下水对两种系统性能的影响,并搭建实验装置进行验证。结果表明:NGWHP系统的能耗显著低于CGWHP系统。地下水供水温度下降或流量增大,两种系统的能耗均呈线性下降趋势。新风比为33%,地下水温从24 ℃降至15 ℃时,NGWHP系统的能耗较CGWHP系统平均低40.56%;地下水流量从1800 kg/h增至2300 kg/h时,NGWHP系统的能耗平均降低42.27%。实验结果与模拟结果吻合较好,二者误差在±13%以内。研究结果可为NGWHP系统的优化设计和运行调控提供理论指导。
Abstract
In view of the high energy consumption of conventional groundwater source heat pump with air-conditioning (CGWHP) system, a novel groundwater source heat pump system with graded treatment of supply air (NGWHP) system is proposed. The groundwater is used to pretreat fresh air and bear the condensation heat of heat pump units, so as to significantly reduce the energy consumption of heat pump units. The steady-state simulation mathematical model of NGWHP system is established by using thermal theory, and the program on the cooling performance of NGWHP and CGWHP systems is made in VC + + environment. The influences of groundwater on the performance of the two systems are compared and analyzed, and an experimental setup is built to verify the simulated values. The results show that the energy consumption of NGWHP system is significantly lower than that of CGWHP system. As the temperature of groundwater supply decreases or the flow rate increases, the energy consumption of the two systems shows a linear downward trend. When the groundwater temperature decreases from 24 ℃ to 15 ℃ with 33% fresh air fraction, the energy consumption of NGWHP system is 40.56% lower than that of CGWHP system on average. When the groundwater flow increases from 1800 kg /h to 2300 kg/h, the average energy consumption of NGWHP system is 42.27% lower than that of the CGWHP system. The experimental results are in good agreement with the simulation results, and the relative errors between the two results are in the range of ±13%. The results provide theoretical guidance for the optimization design and operation control of the NGWHP system.
关键词
地下水源热泵 /
送风 /
预冷器 /
分级处理 /
稳态模型 /
能耗
Key words
groundwater source heat pump /
supply air /
precooler /
graded treatment /
steady-state model /
energy consumption
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王君, 余本东, 王矗垚, 等. 太阳能光伏光热建筑一体化(BIPV/T)研究新进展[J]. 太阳能学报, 2022, 43(6):72-78.
WANG J, YU B D, WANG C Y, et al.New advancements of building integrated photovoltaic/thermal system(BIPV/T)[J]. Acta energiae solaris sinica, 2022, 43(6): 72-78.
[2] 马利敏, 王怀信, 杨强. 高温热泵系统稳态仿真[J]. 太阳能学报, 2011, 32(8): 1144-1150.
MA L M, WANG H X, YANG Q.Steady state system simulation of high temperature heat pump[J]. Acta energiae solaris sinica, 2011, 32(8): 1144-1150.
[3] 徐成良, 雷艳杰, 张军, 等. 某地下水源热泵系统运行策略优化研究[J]. 制冷学报, 2018, 39(5): 72-76.
XU C L, LEI Y J, ZHANG J, et al.Research on operation strategy optimization of a groundwater source heat pump system[J]. Journal of refrigeration, 2018, 39(5): 72-76.
[4] RUSSO S L, GLENDA T, GIORGIA B, et al.Different design scenarios related to an open loop groundwater heat pump in a large building: impact on subsurface and primary energy consumption[J]. Energy and buildings, 2011, 43(2-3): 347-357.
[5] JONG M C.Study on the LWT control schemes of a heat pump for hot water supply[J]. Renewable energy, 2013, 54: 20-25.
[6] 李凤昱, 许天福, 封官宏, 等. T2Well单井地下水源热泵水-热耦合数值模拟研究[J]. 太阳能学报, 2020, 41(4): 278-286.
LI F Y, XU T F, FENG G H, et al.Simulation for water-heat coupling process of single well ground source heat pump systems implemented by T2Well[J]. Acta energiae solaris sinica, 2020, 41(4): 278-286.
[7] 汤志远, 丁国良. 涡旋式水源热泵系统性能仿真[J]. 制冷学报, 2011, 32(1): 33-37, 42.
TANG Z Y, DING G L.Performance simulation of scroll water source heat pump system[J]. Journal of refrigeration, 2011, 32(1): 33-37, 42.
[8] LEI Z, ZAHEERUDDIN M.Dynamic simulation and analysis of a water chiller refrigeration system[J]. Applied thermal engineering, 2005, 25(14-15): 2258-2271.
[9] 许金锋. 表冷器传热系数<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml1-0254-0096-44-6-178"><mml:mi>k</mml:mi></mml:math></inline-formula>的数值分析与研究[D]. 上海: 同济大学, 2000.
XU J F.Numerical analysis and research on heat transfer coefficient <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml2-0254-0096-44-6-178"><mml:mi>k</mml:mi></mml:math></inline-formula> of surface cooler[D]. Shanghai: Tongji University, 2000.
[10] 许阳阳. 电动汽车热泵空调系统的模拟研究[D]. 郑州:郑州大学, 2017.
XU Y Y.Simulation and research on electirc vehicle heat pump air conditioning system[D]. Zhengzhou: Zhengzhou University, 2017.
[11] 张峰. 小型蒸汽压缩式热泵系统仿真与实验研究[D]. 北京: 北京工业大学, 2004.
ZHANG F.Simulation and experimental study of small vapor compression heat pump system[D]. Beijing: Beijing University of Technology, 2004.
[12] 赵宗彬, 宋昱龙, 包继虎, 等. 跨临界CO2空气源热泵系统性能研究[J]. 制冷学报, 2018, 39(2): 22-30.
ZHAO Z B, SONG Y L, BAO J H, et al.Research on system performance of air-source transcritical CO2 heat pump[J]. Journal of refrigeration, 2018, 39(2): 22-30.
[13] 高建强, 张素丽, 武旭阳, 等. 以板式换热器为蒸发器和冷凝器的热泵系统仿真研究[J]. 发电设备, 2018, 32(4): 235-240.
GAO J Q, ZHANG S L, WU X Y, et al.Simulation study of a heat pump system with plate heat exchanger as the evaporator and condenser[J]. Power equipment, 2018, 32(4): 235-240.
[14] YAN Y Y, LIO H C, LIN T F.Condensation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger[J]. International journal of heat and mass transfer, 1999, 42(6): 993-1006.
[15] MULEY A, MANGLIK R M.Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates[J]. Journal of heat transfer: transactions of the ASME, 1999, 121(1): 110-117.
[16] YAN Y Y, LIN T F, YANG B C.Evaporation heat transfer and pressure drop of refrigerant R134a in a plate heat exchanger[C]//ASME Turbo Asia Conference, Singapore, Singapore, 1997.
基金
国家自然科学基金(51876055); 河南省高校科技创新团队(22IRTSTHN006); 河南省重点研发与推广专项(科技攻关)(212102310327)