为更深入考查叶片刚度对风力机气弹响应的影响,对叶片截面的刚度矩阵中的主对角线刚度系数在稳态风和湍流风况下的风力机气弹响应的影响以及敏感性进行系统研究。气弹模型中的气动模块采用基于叶素动量理论,并采用几何精确梁理论对叶片的结构动力学响应进行仿真。选用美国可再生能源实验室(NREL) 5 MW风力机组作为基准模型,调整叶片各截面刚度矩阵的主对角线刚度系数,利用敏感性影响因子评估刚度系数变化对叶片载荷的影响。结果表明:主对角线上挥舞方向的剪切刚度、挥舞弯曲刚度、摆振弯曲刚度、扭转刚度对气弹响应具有中高的敏感性。研究结果对掌握风力机气弹响应规律,发掘更深层次的风力机叶片设计方法提供了一定的指导意义。该方法能进一步扩展至研究叶片刚度对风力机机组气弹响应的敏感性研究。
Abstract
In order to deeply understand the influence of each blade stiffness parameter on the aeroelastic responses of wind turbine, this paper systematically studies the influences and sensitivity of each stiffness parameter in the diagonal of the matrix of the blade sections on the aeroelastic responses of wind turbine under steady and turbulence wind condition. The aerodynamic module in aeroelastic model is calculated based on blade element momentum (theory). The structural dynamic tesponse of the blade is simulated by geometric exact beam theory. The National Renewable Energy Laboratory (NREL) 5 MW wind turbine and blade properties are used as standard model in this study, in which the diagonal stiffness coefficients of each blade section are adjusted according to certain principles. The results show that the axial stiffness, the flapping stiffness, the edgewise stiffness and the torsional stiffness in the main diagonal are moderately and highly sensitive to the aeroelastic response. The research results provide certain guiding significance for further mastering the aeroelastic response law of wind turbine and developing blade optimization design method. This method can be further extended to study the sensitivity of blade stiffness to the aeroelastic response of wind turbines.
关键词
风力机叶片 /
气弹响应 /
刚度矩阵 /
几何精确梁理论 /
敏感性分析
Key words
wind turbine blades /
aeroelastic response /
stiffness matrix /
geometric exact beam theory /
sensitivity analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 伏欣H W. 气动弹性力学原理[M]. 上海:上海科学技术文献出版社, 1982: 397-604.
FORSCHING H W.Principles of aeroelasticity[M]. Shanghai:Shanghai Scientific and Technical Literature Publishing House, 1982: 397-604.
[2] 刘畅畅, 刘子强, 季辰. 不同迎角的翼型气弹特性风洞实验研究[J]. 空气动力学学报, 2012, 30(2): 271-276.
LIU C C, LIU Z Q, JI C.Aeroelastic characteristics of airfoils at different angels of attack in wind tunnel testing[J]. Acta aerodynamica sinica, 2012, 30(2): 271-276.
[3] 汪泉, 余波, 王君, 等. 风力机叶片翼段气弹变形对翼型气动特性影响分析[J]. 可再生能源, 2016, 34(4): 537-542.
WANG Q, YU B, WANG J, et al.Analysis of the influence between the wind turbine blade section aeroelastic deflection and the airfoil aerodynamic performance[J]. Renewable energy resources, 2016, 34(4): 537-542.
[4] LARSEN T, HANSEN A, BUHL T.Aeroelastic effects of large blade deflections for wind turbines[C]//The Science of Making Torque from Wind, Delft, Netherlands, 2004.
[5] ASHWILL T D, KANABY G, JACKSON K, et al.Development of the swept twist adaptive rotor (STAR) blade[C]// 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 2010.
[6] GOZCU M O, OLGUN M N, KAYRAN A.Investigation of the effect of off-axis spar cap plies on damage equivalent loads in wind turbines with super element blade definition[C]//32nd ASME Wind Energy Symposium, National Harbor, MD, USA, 2013.
[7] 段振云, 刘桐, 陈雷, 等. 叶片刚度对风力发电机组载荷的影响[J]. 沈阳工业大学学报, 2014,36(2): 138-142.
DUAN Z Y, LIU T, CHEN L, et al.Influence of blade stiffness on loads of wind turbine[J]. Journal of Shenyang University of Technology, 2014, 36(2): 138-142.
[8] HAYAT K, HA S K.Load mitigation of wind turbine blade by aeroelastic tailoring via unbalanced laminates composites[J]. Composite structures, 2015, 128: 122-133.
[9] 陈刚, 陈进, 庞晓平. 水平轴风力机叶片弯弯耦合气弹响应分析[J]. 太阳能学报, 2020, 41(5):70-76.
CHEN G, CHEN J, PANG X P.Analysis on bending-bending coupled aeroelastic response of horizontal axiswind turbine blades[J]. Acta energiae solaris sinica, 2020, 41(5): 70-76.
[10] MANWELL J F, MCGOWAN J G, ROGERS A L.Wind energy explained: theory, design and application[J]. Wind engineering, 2006, 30(2):169-170.
[11] CHAVIAROPOULOS P K, HANSEN M O.Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver[J]. Journal of fluids engineering, 2000, 122(2): 330-336.
[12] ZHU C Y, WANG T G, ZHONG W.Combined effect of rotational augmentation and dynamic stall on a horizontal axis wind turbine[J]. Energies, 2019, 12(8), 1434.
[13] ELGAMMI M, SANT T.A new stall delay algorithm for predicting the aerodynamics loads on wind turbine blades for axial and yawed conditions[J]. Wind energy, 2017, 20(9): 1645-1663.
[14] HODGES D H.A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams[J]. International journal of solids & structures, 1990, 26(11): 1253-1273.
[15] JONKMAN J M, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5 MW reference wind turbine for offshore system development[R]. NREL/TP-500-38060, 2009.
[16] IEC: 61400-1:2019, Wind energy generation systems part 1: design requirements[S].
基金
2019年度江苏省高校自然科学研究面上项目(19KJB130008)