改进的同步磁阻电机模型预测转矩控制

赵正阳, 杜钦君, 凌辉, 杨姝欣, 冯晗, 李存贺

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 469-476.

PDF(2884 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2884 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 469-476. DOI: 10.19912/j.0254-0096.tynxb.2022-0233

改进的同步磁阻电机模型预测转矩控制

  • 赵正阳, 杜钦君, 凌辉, 杨姝欣, 冯晗, 李存贺
作者信息 +

IMPROVED MODEL PREDICTIE TORQUE CONTROL OF SYNCHRONOUS RELUCTANCE MOTOR

  • Zhao Zhengyang, Du Qinjun, Ling Hui, Yang Shuxin, Feng Han, Li Cunhe
Author information +
文章历史 +

摘要

针对同步磁阻电机模型预测转矩控制转矩脉动大且受电感参数影响大的问题,提出一种改进的同步磁阻电机模型预测转矩控制方法。利用带遗忘因子的递推最小二乘法对电感参数进行辨识,将辨识得到的电感参数用于模型预测转矩控制中,可提高模型预测控制中数学模型的准确性、减少电感参数变化对模型预测转矩控制性能的影响。引入离散空间矢量调制技术,该技术通过合成大量的虚拟矢量提高系统的稳态性能,同时提出一种电压矢量选择简化方法,避免计算全部电压矢量,可减少计算量。仿真结果表明,该方法转矩与磁链脉动小,具有良好的动稳态性能。

Abstract

Aiming at the problem of large torque ripple and large influence of inductance parameters in synchronous reluctance motor model predictive torque control, an improved model predictive torque control method for synchronous reluctance motor is proposed. The recursive least square method with forgetting factor is used to identify the inductance parameters. The identified inductance parameters are used in the model predictive torque control, which improves the accuracy of the mathematical model in the model predictive control and reduces the influence of the change of inductance parameters on the performance of the model predictive torque control. Discrete space vector modulation technology is introduced, which improves the steady-state performance of the system by synthesizing a large number of virtual vectors. At the same time, a simplified method for voltage vector selection is proposed to avoid calculating all voltage vectors and reduce the amount of calculation. The simulation results show that this method has small torque and flux ripple and good dynamic and steady-state performance.

关键词

风电机组 / 模型预测控制 / 参数辨识 / 转矩控制 / 同步磁阻电机 / 离散空间矢量调制

Key words

wind turbines / model predictive control / parameter identification / torque control / synchronous reluctance motor / discrete space vector modulation

引用本文

导出引用
赵正阳, 杜钦君, 凌辉, 杨姝欣, 冯晗, 李存贺. 改进的同步磁阻电机模型预测转矩控制[J]. 太阳能学报. 2023, 44(6): 469-476 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0233
Zhao Zhengyang, Du Qinjun, Ling Hui, Yang Shuxin, Feng Han, Li Cunhe. IMPROVED MODEL PREDICTIE TORQUE CONTROL OF SYNCHRONOUS RELUCTANCE MOTOR[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 469-476 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0233
中图分类号: TM352   

参考文献

[1] 苑晨阳, 李静, 陈健云, 等. 大型风电机组变桨距ABC-PID控制研究[J]. 太阳能学报, 2019, 40(10): 3002-3008.
YUAN C Y, LI J, CHEN J Y, et al.Research on ABC-PID pitch control of large-scale wind turbines[J]. Acta energiae solaris sinica, 2019, 40(10): 3002-3008.
[2] ALMEIDA A T, FERREIRA F J T E, BAOMING G. Beyond induction motors: technology trends to move up efficiency[J]. IEEE transactions on industry applications, 2014, 50(3): 2103-2114.
[3] CAI S, JIN M J, HAO H, et al.Comparative study on synchronous reluctance and PM machines[J]. Compel- the international journal for computation and mathematics in electrical and electronic engineering, 2016, 35(2): 607-623.
[4] 李辉, 谢翔杰, 刘行中, 等. 风电变桨电机参数对控制系统影响分析及改进辨识方法[J]. 电机与控制学报, 2019, 23(7): 9-18.
LI H, XIE X J, LIU X Z, et al.Influence of parameters on control system and improved identification method of pitch motor in wind turbine generator system[J]. Electric machines and control, 2019, 23(7): 9-18.
[5] 叶远茂, 吴捷, 张先亮, 等. 变桨距风力机分区段模拟方法及其控制策略[J]. 电网技术, 2010,34(1): 159-163.
YE Y M, WU J, ZHANG X L, et al.Sectioned simulation of variable blade pitch wind turbine and its control strategy[J]. Power system technology, 2010, 34(1): 159-163.
[6] 艾祥, 王维庆, 王海云. 内置式永磁同步电机12扇区直接转矩控制方法[J]. 太阳能学报, 2020, 41(1): 325-332.
AI X, WANG W Q, WANG H Y.12-sector direct torque control of interior permanent magnet synchronous motor[J]. Acta energiae solaris sinica, 2020, 41(1): 325-332.
[7] 徐心愿, 王云冲, 沈建新. 基于最大转矩电流比的同步磁阻电机DTC-SVM控制策略[J]. 电工技术学报, 2020, 35(2): 246-254.
XU X Y, WANG Y C, SHEN J X.Direct torque control-space vector modulation control strategy of synchronous reluctance motor based on maximum torque per-ampere[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 246-254.
[8] KANG J, SUL S.New direct torque control of induction motor for minimum torque ripple and constant switching frequency[J]. IEEE transactions on industry applications, 1999, 35(5): 1076-1082.
[9] ZHANG X A, FOO G H B. A robust field-weakening algorithm based on duty ratio regulation for direct torque controlled synchronous reluctance motor[J]. IEEE/ASME transactions on mechatronics, 2017, 21(2): 765-773.
[10] 邹涛, 丁宝仓, 张瑞. 模型预测控制工程应用[M]. 北京: 化学工业出版社, 2010: 1-5.
ZOU T, DING B C, ZHANG R.MPC: an introduction to industrial application[M]. Beijing: Chemical Industry Press, 2010: 1-5.
[11] OUANJLI N E, DEROUICH A, GHZIZAL A E, et al.Modern improvement techniques of direct torque control for induction motor drives: a review[J]. Protection and control of modern power systems, 2019, 4(2): 136-147.
[12] 张永昌. 感应电机模型预测控制[M]. 北京: 机械工业出版社, 2020: 12-24.
ZHANG Y C.Model predictive control of induction motor[M]. Beijing: China Machine Press, 2020: 12-24.
[13] 牛峰, 李奎, 王尧. 永磁同步电机模型预测直接转矩控制[J]. 电机与控制学报, 2015, 19(12): 60-67.
NIU F, LI K, WANG Y.Model predictive direct torque control for permanent magnet synchronous machines[J]. Electric machines and control, 2015, 19(12): 60-67.
[14] VEYSINEJA A, RAHMATI S, SHAMLOU S.Predictive direct torque control with reduced number of considered states in synchronous reluctance motor drive[C]// International Power Electronics, Drive Systems and Technologies Conference ,Shiraz, Iran, 2019: 90-95.
[15] CHO Y, LEE K, SONG J, et al.Torque-ripple minimization and fast dynamic scheme for torque predictive control of permanent-magnet synchronous motors[J]. IEEE transactions on power electronics, 2015, 30(4): 2182-2190.
[16] ZHANG Y C, YANG H T.Two-vector-based model predictive torque control without weighting factors for induction motor drives[J]. IEEE transactions on power electronics, 2016, 31(2): 1381-1390.
[17] LI X L, XUE Z W, ZHANG L X, et al.A low-complexity three-vector-based model predictive torque control for SPMSM[J]. IEEE transactions on power electronics, 2021, 36(11): 13002-13012.
[18] VAZQUEZ S, LEON J I, FRANQUELO L G, et al.Model predictive control with constant switching frequency using a discrete space vector modulation with virtual state vectors[C]// IEEE International Conference on Industrial Technology, Churchill, Australia ,2009: 1-6.
[19] IBRAHIN M N, SERGEANT P, RASHAD E M.Relevance of including saturation and position dependence in the inductances for accurate dynamic modeling and control of SynRMs[J]. IEEE transactions on industry applications, 2017, 53(1): 151-160.
[20] 滕青芳, 罗维多. 基于复合控制的三电平逆变器驱动PMSM的MPTC[J]. 太阳能学报, 2020, 41(7): 173-182.
TENG Q F, LUO W D.Model predictive torque control for PMSM systems fed by three level inverter based on compound control strategy[J]. Acta energiae solaris sinica, 2020, 41(7): 173-182.
[21] CASADEI D, SERRA G, TANI K.Implementation of a direct control algorithm for induction motors based on discrete space vector modulation[J]. IEEE transactions on power electronics, 2000, 15(4): 769-777.

基金

国家自然科学基金(62076152); 山东省自然科学基金(ZR2020MF096); 山东省科技型中小企业创新能力提升工程项目(2021TSGC1109)

PDF(2884 KB)

Accesses

Citation

Detail

段落导航
相关文章

/