针对现有车载燃料电池管道在吹扫过程中氢气侧管道由于低温结冰易受阻,从而导致冷启动困难的问题,提出氢气管道两级吹扫方案,以实现对燃料电池堆氢管中剩余水、蒸汽含量的独立控制,降低冷启动时的加热能耗,避免冷启动失效。通过三维仿真对4种不同工况下阴极中段在不同时间的温度、阴极中段在不同时间的冰体积分数、电池纵向截面表面不同时间的温度进行分析,结果表明该方案可实现在-20 ℃温度下20 s内的平稳冷启动,既解决了低温冷启动困难问题,又保证了冷启动后的电堆输出性能。
Abstract
The hydrogen side pipeline is prone to being blocked due to the low-temperature icing in the purging process of the existing on-board fuel cell pipeline, which tends to result in the difficulty of a cold start. In response to this problem, a two-stage purging scheme of the hydrogen pipeline is proposed, so as to realize an independent control of the content of residual water and steam in the hydrogen pipe of fuel cell stack, reduce the heating energy consumption during a cold start and avoid the failure of the cold start. Based on a three-dimensional simulation, the temperatures of the middle section of the mid cathode at different times, the ice volume fractions of the section at different times and the temperatures on the surface of the longitudinal section of the battery at different times under four different working conditions are analyzed. Results show that this scheme can achieve a stable cold start in 20 seconds at -20 ℃, which offers the solution to the difficulty in low-temperature cold start, and meanwhile ensures the output performance of an electric pile after a cold start.
关键词
氢燃料电池 /
仿真建模 /
扫气 /
管道 /
电堆启动
Key words
hydrogen fuel cell /
simulation modeling /
purging /
hydrogen pipeline /
reactor startup
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHANG G B, YUAN H, WANG Y, et al.Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model[J]. Applied energy, 2019, 255:113865.
[2] 韩恺, 谭红霞, 李小龙, 等. 一种车载燃料电池氢气管道吹扫系统及方法: CA112234228A[P].2021-01-15.
HAN K,TAN H X, LI X L, et al. The invention relates to a hydrogen pipe purging system and a method for vehicle fuel cell: CA112234228A[P].2021-01-15.
[3] ADNAN O, SAMANEH S, ZHAO J, et al.Degradations in porous components of a proton exchange membrane fuel cell under freeze-thaw cycles: Morphology and microstructure effects[J]. International journal of hydrogen energy, 2020, 45(5): 3618-3631.
[4] LI L J, WANG S X, YUE L K, et al.Cold-start method for proton-exchange membrane fuel cells based on locally heating the cathode[J]. Applied energy, 2019, 254: 113716.
[5] ZHU M Q, XIE X, WU K C, et al.Experimental investigation of the effect of membrane water content on PEM fuel cell cold start[J]. Energy procedia, 2019, 158: 1724-1729.
[6] LI L J, WANG S X, YUE L K, et al.Cold-start icing characteristics of proton-exchange membrane fuel cells[J]. International journal of hydrogen energy, 2019, 44: 12033-12042.
[7] WEI L, LIAO Z H, SUO Z B, et al.Numerical study of cold start performance of proton exchange membrane fuel cell with coolant circulation[J]. International Journal of hydrogen energy, 2019, 44(39): 22160-22172.
[8] GUO H P, SUN S C, YU H M, et al.Proton exchange membrane fuel cell subzero start-up with hydrogen catalytic reaction assistance[J]. Journal of power sources, 2019, 429: 180-187.
[9] 孙术发, 任春龙, 杨洁, 等. 二次吹扫条件下PEMFC电堆冷启动特性实验研究[J]. 太阳能学报, 2021, 42(5): 54-59.
SUN S F, REN C L, YANG J, et al.Experimental study on cold boot characteristics of PEMFC stack under twice-purge condition[J]. Acta energiae solaris sinica, 2021, 42(5): 54-59.
[10] 崔垚鹏. 质子交换膜燃料电池冷启动策略研究[D]. 重庆: 重庆理工大学, 2020: 45-54.
CUI Y P.Research on cold start strategy of proton exchange membrane fuel cell[D]. Chongqing: Chongqing University of Technology, 2020: 45-54.
[11] 魏永琪, 赵玉兰, 贠海涛. 质子交换膜燃料电池系统启停控制策略的研究[J]. 重庆理工大学学报, 2021, 35(1): 75-82.
WEI Y Q, ZHAO Y L, YUN H T.Study of proton exchang membrane fuel cell in the and shutdown operation strategy[J]. Journal of Chongqing University of Technology (natural science), 2021, 35(1): 75-82.
[12] 刘威. 质子交换膜燃料电池吹扫除水与低温冷启动研究[D]. 武汉: 武汉理工大学, 2009: 41-45.
LIU W.Research on prepurge and cold start of proton exchange membrane fuel cells[D]. Wuhan: Wuhan University of Technology, 2009: 41-45.
[13] 罗马吉, 王芳芳, 刘威, 等. 二次吹扫条件下的PEMFC冷启动实验[J]. 华中科技大学学报(自然科学版), 2011, 39(6): 116-120.
LUO M J, WANG F F, LIU W, et al.PEMFC cold-start performance after twice purge[J]. Journal of Huazhong University of Science and Technology (natural science), 2011, 39(6): 116-120.
[14] 许澎, 张洁, 郭鑫, 等. 燃料电池电堆停机吹扫及低温冷启动性能的试验研究[J]. 同济大学学报(自燃科学版), 2017, 45(1): 126-131.
XU P, ZHANG J, GUO X, et al.Experimental study on the performance of fuel cell stack downtime blowing and low temperature cold start[J]. Journal of Tongji University (natural science), 2017, 45(1): 126-131.
[15] 常贵可. 质子交换膜燃料电池冷启动性能仿真与启动策略研究[D]. 淄博: 山东理工大学, 2020: 51-57.
CHANG K G.Study on simulation and startup strategy of cold start performance of proton exchange membrane fuel cell[D]. Zibo: Shandong University of Technology, 2020: 51-57.
[16] 王勇, 邱宜彬, 刘志洋. 联合辅助负载和N2吹扫停机策略的实验研究[J]. 太阳能学报, 2017, 38(11): 3043-3048.
WANG Y, QIU Y B, LIU Z Y.Experimental study on shut-down strategy about combining auxiliary load and nitrogen purging[J]. Acta energiae solaris sinica, 2017, 38(11): 3043-3048.
[17] 许澎, 高源, 许思传. 质子交换膜燃料电池停机后吹扫仿真[J]. 同济大学学报(自然科版), 2017, 45(12): 1873-1878.
XU P, GAO Y, XU S C.Numerical simulation on purge after shutdown in proton exchange membrane fuel cell[J]. Journal of Tongji University(natural science), 2017, 45(12): 1873-1878.
基金
陕西省自然科学基础研究一般项目(2020JM-645)