基于LMD能量熵和定位分析的风电变流器开路故障诊断

张瑞成, 白晓泽, 董砚, 邸志刚, 孙鹤旭, 张靖轩

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 484-494.

PDF(2783 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2783 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 484-494. DOI: 10.19912/j.0254-0096.tynxb.2022-0257

基于LMD能量熵和定位分析的风电变流器开路故障诊断

  • 张瑞成1, 白晓泽1, 董砚2, 邸志刚1, 孙鹤旭3, 张靖轩1,4
作者信息 +

OPEN-CIRCUIT FAULT DIAGNOSIS OF WIND POWER CONVERTER BASED ON LMD ENERGY ENTROY AND LOCATION ANALYSIS

  • Zhang Ruicheng1, Bai Xiaoze1, Dong Yan2, Di Zhigang1, Sun Hexu3, Zhang Jingxuan1,4
Author information +
文章历史 +

摘要

为提高风电变流器的故障诊断准确率,针对永磁同步风电机组网侧变流器IGBT模块的单一开路和双开路故障问题,提出一种基于局部均值分解(LMD)能量熵和定位分析的风电变流器开路故障诊断方法。首先,采集网侧变流器三相输出电流作为原始信号,利用LMD将其自适应分解为多层乘积函数(PF)分量,并求取各状态下PF分量的能量熵特征。然后,根据开路故障造成的三相电流时间序列的畸变特性进行定位分析。最后,将融合能量熵特征和定位参数的特征向量输入栈式稀疏自编码(SSAE)网络进行训练和故障识别。仿真与实验结果表明,融合能量熵特征和定位分析的特征提取方法使故障特征更为明显,相较于其他特征提取方法可有效提高风电变流器故障诊断准确率。

Abstract

To improve the accuracy of fault diagnosis of wind power converters, a novel method to diagnose the single and double IGBT modules open-circuit faults of the permanent magnet synchronous generator wind turbines grid-side converter, based on local mean decomposition (LMD) energy entropy and location analysis, is proposed. Primarily, the three-phase output current of the grid-side converter is collected as the original signal, which is adaptively decomposed into multi-layer product function (PF) components using LMD, and the energy entropy characteristics of the PF components in each state are obtained. Afterward, the location analysis is carried out according to the distortion characteristics of the three-phase current time series caused by the open-circuit fault. Finally, the feature vectors of the fused energy entropy features and location parameters are inputted into a stacked sparse auto encoder (SSAE) network for training and fault identification. The simulation and experimental results show that the feature extraction method fused energy entropy features and location analysis is more obvious to address fault features. Compared with other feature extraction methods, the proposed method can effectively improve the fault diagnosis accuracy of the wind power converter.

关键词

风电机组 / 变流器 / 故障诊断 / 能量熵 / 定位分析 / 栈式稀疏自编码网络

Key words

wind turbines / converter / fault diagnosis / energy entropy / location analysis / SSAE

引用本文

导出引用
张瑞成, 白晓泽, 董砚, 邸志刚, 孙鹤旭, 张靖轩. 基于LMD能量熵和定位分析的风电变流器开路故障诊断[J]. 太阳能学报. 2023, 44(6): 484-494 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0257
Zhang Ruicheng, Bai Xiaoze, Dong Yan, Di Zhigang, Sun Hexu, Zhang Jingxuan. OPEN-CIRCUIT FAULT DIAGNOSIS OF WIND POWER CONVERTER BASED ON LMD ENERGY ENTROY AND LOCATION ANALYSIS[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 484-494 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0257
中图分类号: TM464   

参考文献

[1] 党建, 罗燚, 田录林, 等. 基于优化的 VMD 融合信息熵和 FA_PNN的风电机组齿轮箱故障诊断[J]. 太阳能学报, 2021, 42(1): 198-204.
DANG J, LUO Y, TIAN L L, et al.Fault diagnosis of wind turbine gearbox based on optimized vmd fusion information entropy and FA_PNN[J]. Acta energiae solaris sinica, 2021, 42(1): 198-204.
[2] LI P, XIONG L, MA M, et al.Energy-shaping L2-gain controller for PMSG wind turbine to mitigate subsynchronous interaction[J]. International journal of electrical power & energy systems, 2022, 135: 107571.
[3] 苏连成, 邢美玲, 张慧. 基于组合预测模型的风电机组关键部位故障检测[J]. 太阳能学报, 2021, 42(10): 220-225.
SU L C, XING M L, ZHANG H.Fault detection of key components of wind turbine based on combination prediction modeL[J]. Acta energiae solaris sinica, 2021, 42(10): 220-225.
[4] 唐明珠, 匡子杰, 吴华伟, 等. 基于mcODM-STA的风电机组变桨系统故障诊断[J]. 湖南大学学报(自然科学版), 2021, 48(6): 119-125.
TANG M Z, KUANG Z J, WU H W, et al.Fault diagnosis of wind power pitch system based on multi-class optimal margin distribution machine optimized by state transition algorithm[J]. Journal of Hunan University(natural science edition), 2021, 48(6):119-125.
[5] 沈艳霞, 周文晶, 纪志成, 等. 基于小波包与SVM的风电变流器故障诊断[J]. 太阳能学报, 2015, 36(4): 785-791.
SHEN Y X, ZHOU W J, JI Z C, et al.Fault diagnosis of converter used in wind power generation based on wavelet packet analysis and SVM[J]. Acta energiae solaris sinica, 2015, 36(4): 785-791.
[6] DUAN H, LU M, SUN Y T, et. Fault diagnosis of PMSG wind power generation system based on LMD and MSE[J]. Complexity, 2020, (24): 1-11.
[7] 李兵, 崔介兵, 何怡刚, 等. 基于能量谱熵及小波神经网络的有源中性点钳位三电平逆变器故障诊断[J]. 电工技术学报, 2020, 35(10): 2216-2225.
LI B, CUI J B, HE Y G, et al.Fault diagnosis of active neutral point clamped three-level inverter based on energy spectrum entropy and wavelet neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2216-2225.
[8] XIAO C, LIU Z J, ZHANG T L, et al.Deep learning method for fault detection of wind turbine converter[J]. Applied sciences, 2021, 11(3): 1280.
[9] SHAO S, WHEELER P W, CLARE J C, et al.Fault detection for modular multilevel converters based on sliding mode observer[J]. IEEE transactions on power electronics, 2013, 28(11): 4867-4872.
[10] ZHAO H S, CHENG L L .Open switch fault diagnostic method for back to back converters of doubly fed wind power generation system[J]. IEEE transactions on power electronics, 2017, 33(4): 3452-3461.
[11] WANG T Z, XU H, HAN J G, et al.Cascaded H-bridge multilevel inverter system fault diagnosis using a PCA and multiclass relevance vector machine approach[J]. IEEE transactions on power electronics, 2015, 30(12): 7006-7018.
[12] DHUMALE R B, LOKHANDE S D.Neural network fault diagnosis of voltage source inverter under variable load conditions at different frequencies[J]. Measurement, 2016, 91: 565-575.
[13] LIANG J P, ZHANG K, AL-DURRA A, et al.A novel fault diagnostic method in power converters for wind power generation system[J]. Applied energy, 2020, 266: 114851.
[14] SHEN Y F, WANG T Z, AMIRAT Y, et al.IGBT open-circuit fault diagnosis for MMC submodules based on weighted-amplitude permutation entropy and DS evidence fusion theory[J]. Machines, 2021, 9(12): 317.
[15] ZHANG J X, SUN H X, SUN Z X, et al.Open-circuit fault diagnosis of wind power converter using variational mode decomposition, trend feature analysis and deep belief network[J]. Applied sciences, 2020, 10(6): 2146.
[16] SMITH J S.The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454.
[17] 张超, 杨立东, 李建军. 局部均值分解和经验模态分解的性能对比研究[J]. 机械设计与研究, 2012, 28(3): 38-40.
ZHANG C, YANG L D, LI J J.The performance contrast between local mean decomposition and empirical mode decomposition[J]. Machine design and research, 2012, 28(3): 38-40.
[18] 徐乐, 邢邦圣, 郎超男, 等. LMD能量熵和SVM相结合的滚动轴承故障诊断[J]. 机械科学与技术, 2017, 36(6): 915-918.
XU L, XING B S, LANG C N, et al.Fault diagnosis of rolling bearing combined lmd energy entropy and SVM[J]. Mechanical science and technology for aerospace engineering, 2017, 36(6): 915-918.
[19] 张靖轩, 孙鹤旭, 孙泽贤, 等. 小波神经网络对风力发电机组功率变流器的故障诊断[J]. 现代电子技术, 2021, 44(1): 162-166.
ZHANG J X, SUN H X, SUN Z X, et al.Fault diagnosis of power converter of wind generator set by wavelet neural network[J]. Modern electronics technique, 2021, 44(1): 162-166.
[20] 高佳程, 朱永利, 郑艳艳, 等. 基于VMD-WVD分布与堆栈稀疏自编码网络的局放类型识别[J]. 中国电机工程学报, 2019, 39(14): 4118-4129.
GAO J C, ZHU Y L, ZHENG Y Y, et al.Pattern recognition of partial discharge based on VMD-WVD and SSAE[J]. Proceedings of the CSEE, 2019, 39(14): 4118-4129.
[21] 张国恒, 高锋阳, 石岩, 等. 基于贝叶斯网络的牵引逆变器开路故障多特征融合诊断方法[J]. 铁道科学与工程学报, 2020, 17(3): 732-740.
ZHANG G H, GAO F Y, SHI Y, et al.Multi-feature fusion diagnosis method of open circuit fault for traction inverter based on Bayesian network[J]. Journal of railway science and engineering, 2020, 17(3): 732-740.

基金

河北省重点研发计划(20314502D); 河北省教育厅科学技术研究项目(ZD2021332; JQN2020020; JQN2022001); 唐山市科技计划(21130219C)

PDF(2783 KB)

Accesses

Citation

Detail

段落导航
相关文章

/