在双碳目标背景下,为实现电网调峰以消纳更多新能源以及传统火电的节能减排需求,该文建立配合储能系统及大规模风电并网的不同调峰深度下火电机组环境经济调度模型,分析火电机组的调峰能力以及不同调峰深度下机组的煤耗特性和CO2排污特性的变化;提出一种不同调峰深度下的惩罚因子,将多目标环境经济调度转化为单目标优化,并给出一种改进的灰狼算法以求解模型。与原始灰狼算法和粒子群算法相比,该文提出的算法具有更好的优化性能。算例结果表明:在RPR和DPR调峰阶段,系统煤耗成本和CO2排放量随调峰深度增加而减小;在DPRO调峰阶段,CO2排放量随调峰深度增加而增加。储能系统发挥了削峰填谷的作用,大幅减小弃风,降低了系统运行的总成本。
Abstract
Under the background of carbon neutrality and emission peak, in order to achieve the aim of peak-load regulation of power grid to satisfy the demands of more accommodation capacity to new energy and energy conservation and emission reduction of traditional thermal power, this paper puts forward an environmental economic dispatch model of thermal power units at different peak-load regulation depths in large-scale wind power connected to grid with energy-storage system, analyzes the peak-load regulation capacity of thermal power units and the changes of characteristics of coal consumption and CO2 emission at different peak-load regulation depths, proposes a penalty factor at different peak-load regulation depths to transform multi-objective environmental economic dispatch into single-objective optimization,and establishes an improved gray wolf optimization to solve the model. Compared with the original gray wolf optimization and the particle swarm optimization, the improved gray wolf optimization has better optimization performance. The results show that the cost of coal consumption and CO2 emission decline with the adding of peak-load regulation depth in RPR and DPR, and the CO2 emission increases with the adding of peak-load regulation depth in DPRO. Energy-storage system can play the role of decreasing peak load and increasing valley load, greatly reducing the rate of wind curtailment and the total cost of the system.
关键词
环境经济调度 /
二氧化碳 /
燃煤 /
调峰 /
负荷分配 /
改进灰狼算法
Key words
environmental economic dispatch /
carbon dioxide /
coal combustion /
peak-load regulation /
load distribution /
improved gray wolf optimization
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 新华社. 习近平在第七十五届联合国大会一般性辩论上发表重要讲话[EB/OL]. [2020-09-22]. http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm.
Xinhua news agency. Xi Jinping delivered an important speech at the general debate of the seventy-fifth United Nations General Assembly[EB/OL]. [2020-09-22]. http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm.
[2] LI C.Multi-objective optimization of space adaptive division for environmental economic dispatch[J]. Sustainable computing: informatics and systems, 2021, 30: 100500.
[3] XU J P, WANG F J, LYU C W, et al.Carbon emission reduction and reliable power supply equilibrium based daily scheduling towards hydro-thermal-wind generation system: a perspective from China[J]. Energy conversion and management, 2018, 164: 1-14.
[4] LIU B H, FU Z G, WANG P K, et al.Big-data-mining-based improved K-means algorithm for energy use analysis of coal-fired power plant units: a case study[J]. Entropy, 2018, 20(9): 702.
[5] WANG C Y, OLSSON G, LIU Y.Coal-fired power industry water-energy-emission nexus: a multi-objective optimization[J]. Journal of cleaner production, 2018, 203: 367-375.
[6] MAHDI F P, VASANT P, KALLIMANI V, et al.A holistic review on optimization strategies for combined economic emission dispatch problem[J]. Renewable and sustainable energy reviews, 2017, 81(2): 3006-3020.
[7] GOUDARZI A, LI Y J, XIANG J.A hybrid non-linear time-varying double-weighted particle swarm optimization for solving non-convex combined environmental economic dispatch problem[J]. Applied soft computing, 2020, 86: 105894.
[8] BHADORIA A, MARWAHA S, KAMBOJ V K.An optimum forceful generation scheduling and unit commitment of thermal power system using sine cosine algorithm[J]. Neural computing and applications, 2020, 32: 2785-2814.
[9] 刘刚, 朱永利, 蒋伟. 基于混合DE-PSO多目标算法的动态环境经济调度[J]. 电力自动化设备, 2018, 38(8): 1-7.
LIU G, ZHU Y L, JIANG W.Dynamic economic emission dispatch based on hybrid DE-PSO multi-objective algorithm[J]. Electric power automation equipment, 2018, 38(8): 1-7.
[10] 董超, 张彦涛, 刘嘉宁, 等. 考虑火电机组深度调峰的实时发电计划模型及应用[J]. 电力自动化设备, 2019, 39(3): 108-113.
DONG C, ZHANG Y T, LIU J L, et al.Real-time generation scheduling model and its application considering deep peak regulation of thermal power units[J]. Electric power automation equipment, 2019, 39(3): 108-113.
[11] 张子泳, 仉梦林, 李莎. 基于多目标粒子群算法的电力系统环境经济调度研究[J]. 电力系统保护与控制, 2017, 45(10): 1-10.
ZHANG Z Y, ZHANG M L, LI S.Environmental economic power dispatch based on multi-objective particle swarm constraint optimization algorithm[J]. Power system protection and control, 2017, 45(10): 1-10.
[12] 林俐, 田欣雨. 基于火电机组分级深度调峰的电力系统经济调度及效益分析[J]. 电网技术, 2017, 41(7): 2255-2262.
LIN L, TIAN X Y.Analysis of deep peak regulation and its benefit of thermal units in power system with large scale wind power integrated[J]. Power system technology, 2017, 41(7): 2255-2262.
[13] 林俐, 邹兰青, 周鹏, 等. 规模风电并网条件下火电机组深度调峰的多角度经济性分析[J]. 电力系统自动化, 2017, 41(7): 21-27.
LIN L, ZOU L Q, ZHOU P, et al.Multi-angle economic analysis on deep peak regulation of thermal power units with large-scale wind power integration[J]. Automation of electric power systems, 2017, 41(7): 21-27.
[14] 侯玉婷, 李晓博, 刘畅, 等. 火电机组灵活性改造形势及技术应用[J]. 热力发电, 2018, 47(5): 8-13.
HOU Y T, LI X B, LIU C, et al.Flexibility reform situation and technical application of thermal power units[J]. Thermal power generation, 2018, 47(5): 8-13.
[15] 谭碧飞, 陈皓勇, 梁子鹏, 等. 基于协同NSGA-Ⅱ的微电网随机多目标经济调度[J]. 高电压技术, 2019, 45(10): 3130-3140.
TAN B F, CHEN H Y, LIANG Z P, et al.Stochastic multi-objective economic dispatch of micro-grid based on coNSGA-Ⅱ[J]. High voltage engineering, 2019, 45(10): 3130-3140.
[16] ZHAO X G, LIANG J, MENG J, et al.An improved quantum particle swarm optimization algorithm for environmental economic dispatch[J]. Expert systems with applications, 2020, 152: 113370.
[17] 王淑云, 娄素华, 吴耀武, 等. 计及火电机组深度调峰成本的大规模风电并网鲁棒优化调度[J]. 电力系统自动化, 2020, 44(1): 118-125.
WANG S Y, LOU S H, WU Y W, et al.Robust optimal dispatch of large-scale wind power integration considering deep peak regulation cost of thermal power units[J]. Automation of electric power systems, 2020, 44(1): 118-125.
[18] ABDELAZIZ A, ALI E S, ELAZIM S M A. Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems[J]. Energy, 2016, 101: 506-518.
[19] MIRJALILI S, MIRJALILI S M, LEWIS A.Grey wolf optimizer[J]. Advances in engineering software, 2014, 69(3): 46-61.
[20] 张铃, 张钹. 佳点集遗传算法[J]. 计算机学报, 2001, 24(9): 917-922.
ZHANG L, ZHANG B.Good point set based genetic algorithm[J]. Chinese journal of computers, 2001, 24(9): 917-922.
[21] 崔明朗, 杜海文, 魏政磊, 等. 多目标灰狼优化算法的改进策略研究[J]. 计算机工程与应用, 2018, 54(5): 156-164.
CUI M L, DU H W, WEI Z L, et a1. Research on improved strategy for multi-objective grey wolf optimizer[J]. Computer engineering and applications, 2018, 54(5): 156-164.
[22] 李艳娟, 陈阿慧. 基于禁忌搜索的人工蜂群算法[J]. 计算机工程与应用, 2017, 53(4): 145-151.
LI Y J,CHEN A H.Artificial bee colony algorithm based on taboo search[J]. Computer engineering and applications, 2017, 53(4): 145-151.
[23] NADIMI-SHAHRAKI M H, TAGHIAN S, MIRJALILI S. An improved grey wolf optimizer for solving engineering problems[J]. Expert systems with applications, 2021, 166: 113917.